Math 35

Winter 2014

Some Sample Solutions from Wednesday, January 22

Exercise 1: Give a careful proof that a bounded increasing sequence $\left\{a_{n}\right\}$ converges to $a=\sup \left\{a_{n} \mid n \in \mathbb{Z}^{+}\right\}$.

Proof: Let $\left\{a_{n}\right\}$ be a bounded increasing sequence. Since $\left\{a_{n}\right\}$ is bounded, $a=\sup \left\{a_{n} \mid n \in \mathbb{Z}^{+}\right\}$exists by the completeness axiom. We must show $\left\{a_{n}\right\}$ converges to a.

Let $\varepsilon>0$.
Since a is the least upper bound of $\left\{a_{n} \mid n \in \mathbb{Z}^{+}\right\}$, then $a-\varepsilon$ is not an upper bound. Therefore there is some N such that $a_{N}>a-\varepsilon$.

Choose any such N. We will show that, for all $n \geq N$, we have $\left|a-a_{n}\right|<\varepsilon$. This will complete the proof that $\left\{a_{n}\right\}$ converges to a.

To do this, suppose $n \geq N$. By our choice of N, we have $a-\varepsilon<a_{N}$. Because the sequence is increasing, we have $a_{N} \leq a_{n}$. Because a is an upper bound for the terms of the sequence, we have $a_{n} \leq a$.

Since $a-\varepsilon<a_{N} \leq a_{n} \leq a$, we have $\left|a-a_{n}\right|<\varepsilon$, which is what we needed to show.

Exercise 2: Define a sequence $\left\{x_{n}\right\}$ to be eventually bounded above by a if there is N such that

$$
(\forall n \geq N)\left[x_{n} \leq a\right]
$$

and eventually bounded below by b if there is M such that

$$
(\forall n \geq M)\left[x_{n} \geq b\right]
$$

(c.) Complete the following, using the concepts "eventually bounded above" and "eventually bounded below":

The sequence $\left\{x_{n}\right\}$ converges to the real number L if and only if
Claim: The sequence $\left\{x_{n}\right\}$ converges to the real number L if and only if, for every $\varepsilon>0$, the sequence $\left\{x_{n}\right\}$ is eventually bounded above by $L+\varepsilon$ and eventually bounded below by $L-\varepsilon$.

Exercise 3: A sequence $\left\{a_{n}\right\}$ is called a Cauchy sequence if it satisfies

$$
(\forall \varepsilon>0)\left(\exists N \in \mathbb{Z}^{+}\right)(\forall m, n \geq N)\left[\left|a_{m}-a_{n}\right|<\varepsilon\right] .
$$

This says that by going far enough out in the sequence, you can guarantee that a_{m} and a_{n} are close to each other, regardless of how far apart m and n are.
(a.) Show that the sequence $\left\{a_{n}\right\}$ given by

$$
a_{n}=\sum_{k=0}^{n} 3(.24)^{k}
$$

is a Cauchy sequence.
Let $r=.24$. Then we have

$$
a_{n}=\sum_{k=0}^{n} 3 r^{k}
$$

and, for $m>n$,
$0<a_{m}-a_{n}=\sum_{k=n+1}^{m} 3 r^{k}=3 r^{n} \sum_{i=1}^{m-n} r^{k}=3 r^{n} \frac{1-r^{m-n+1}}{1-r}<3 r^{n} \frac{1}{1-r}=\frac{3}{.76} r^{n}$.
We will use the fact that since $0<r<1$, the sequence $\left\{r^{n}\right\}$ converges to 0 and is decreasing.

To show $\left\{a_{n}\right\}$ is a Cauchy sequence, let $\varepsilon>0$, and choose N such that $\frac{3}{.76} r^{N}<\varepsilon$. (We can do this because $\left\{r^{n}\right\}$ converges to 0 .)

Now, suppose $m, n \geq N$, and without loss of generality say $m>n$. Using the fact that for $N \leq n$ we have $r^{N} \geq r^{n}$, we can write

$$
0<a_{m}-a_{n} \leq \frac{3}{.76} r^{n} \leq \frac{3}{.76} r^{N}<\varepsilon
$$

Therefore $\left|a_{n}-a_{n}\right|<\varepsilon$ for all $n, m<N$, which is what we needed to show.

Exercise 4: Give an example of a sequence $\left\{a_{n}\right\}$ that is not a Cauchy sequence, but that does satisfy

$$
(\forall \varepsilon>0)\left(\exists N \in \mathbb{Z}^{+}\right)(\forall n \geq N)\left[\left|a_{n+1}-a_{n}\right|<\varepsilon\right] .
$$

This says merely that by going far enough out in the sequence, you can guarantee that a_{n} is close to a_{n+1}.

For this problem in particular, you might want to describe your sequence by writing out enough terms to make a pattern apparent, rather than trying to find a formula for a_{n}. You need not prove anything. If it is not obvious that your sequence works, you should explain informally why it does.

Hint: You can go a long distance in tiny steps by taking many steps.

Possible Solution:

$$
\left(0,1,1 \frac{1}{2}, 2,2 \frac{1}{3}, 2 \frac{2}{3}, 3,3 \frac{1}{4}, 3 \frac{1}{2}, 3 \frac{3}{4}, 4,4 \frac{1}{5}, \ldots\right)
$$

I think it's obvious that this works, but here's a brief, informal explanation, anyway:

This sequence approaches $+\infty$, so no matter how large N is, we can find $n, m \geq N$ such that a_{n} and a_{m} are far apart. However, for every natural number m, there is an N such that $a_{N}=m$, and for all $n \geq N$ we have $\left|a_{n+1}-a_{n}\right|<\frac{1}{m}$.

Exercise 6: Suppose $\left\{x_{n}\right\}$ is a Cauchy sequence.
(a.) Show $\left\{x_{n}\right\}$ is bounded.

This is proven in the textbook.
(b.) Given that $\left\{x_{n}\right\}$ is a Cauchy sequence, what can you say about the sets

$$
\begin{aligned}
& A=\left\{a \mid\left\{x_{n}\right\} \text { is eventually bounded above by } a\right\} \\
& B=\left\{b \mid\left\{x_{n}\right\} \text { is eventually bounded below by } b\right\} ?
\end{aligned}
$$

We will argue somewhat intuitively, using the idea that " $\left\{x_{n}\right\}$ is eventually bounded above by a " means that, if n is large enough, we must have $x_{n} \leq a$, and similarly for "eventually bounded below".

Since $\left\{x_{n}\right\}$ is bounded, it is bounded both above and below, so $A \neq \emptyset$ and $B \neq \emptyset$.

It is not hard to see that if a is in A, so is every number $y>a$, and if b is in B, so is every number $y<b$.

Furthermore, if $a \in A$ and $b \in B$, then $b \leq a$. (For large enough n, we must have both $b \leq x_{n}$, since $\left\{x_{n}\right\}$ is eventually bounded below by b, and $x_{n} \leq a$, since $\left\{x_{n}\right\}$ is eventually bounded above by a.)

That is, every element of A is an upper bound for B, and every element of B is a lower bound for A. Therefore, A is bounded below, and has a greatest lower bound \bar{a}, and B is bounded above, and has a least upper bound \bar{b}.

We must have $\bar{b} \leq \bar{a}$.
We can show that, in fact, $\bar{b}=\bar{a}$. (Here is the first time we use the fact that $\left\{x_{n}\right\}$ is a Cauchy sequence; everything we have said up until now applies to any bounded sequence.)

Suppose not, and we have $\bar{a}-\bar{b}=h>0$. Using the fact that $\left\{x_{n}\right\}$ is a Cauchy sequence, we can find N such that, for all $n, m \geq N$, we have $\left|x_{n}-x_{m}\right|<\frac{h}{3}$. In particular, for all $n \geq N$ (setting $m=N$), we have $x_{N}-\frac{h}{3}<x_{n}<x_{N}+\frac{h}{3}$.

This means that $\left\{x_{n}\right\}$ is eventually bounded below by $x_{N}-\frac{h}{3}$, and so $x_{N}-\frac{h}{3} \in B$. Similarly $x_{N}+\frac{h}{3} \in A$. Therefore, since \bar{b} is an upper bound for B and \bar{a} is a lower bound for A, we have $x_{N}-\frac{h}{3} \leq \bar{b} \leq \bar{a} \leq x_{N}+\frac{h}{3}$. But then \bar{a} and \bar{b} both lie in an interval of length $\frac{2 h}{3}$, contradicting our assumption that their difference was h.

This proves $\bar{a}=\bar{b}$.
Set $L=\bar{a}=\bar{b}$. We can now prove that $\left\{x_{n}\right\}$ converges to L. By problem (2)(c) above, it is enough to show that, for every $\varepsilon>0$, the sequence is eventually bounded above by $L+\varepsilon$ and eventually bounded below by $L-\varepsilon$. That is, we must show that $L+\varepsilon \in A$, and $L-\varepsilon \in B$.

To show that $L+\varepsilon \in A$, we use the fact that $L=\bar{a}$ is the greatest lower bound for A. Therefore, $L+\varepsilon$ is not a lower bound for A, and there is an $a \in A$ such that $a \leq L+\varepsilon$. But then also $L+\varepsilon \in A$.

The proof that $L-\varepsilon \in B$ is similar.

