
Math 35
Winter 2014

Some Sample Solutions from Wednesday, January 22

Exercise 1: Give a careful proof that a bounded increasing sequence {an}
converges to a = sup {an | n ∈ Z+}.

Proof: Let {an} be a bounded increasing sequence. Since {an} is bounded,
a = sup {an | n ∈ Z+} exists by the completeness axiom. We must show
{an} converges to a.

Let ε > 0.
Since a is the least upper bound of {an | n ∈ Z+}, then a − ε is not an

upper bound. Therefore there is some N such that aN > a− ε.
Choose any such N . We will show that, for all n ≥ N , we have |a−an| < ε.

This will complete the proof that {an} converges to a.
To do this, suppose n ≥ N . By our choice of N , we have a − ε < aN .

Because the sequence is increasing, we have aN ≤ an. Because a is an upper
bound for the terms of the sequence, we have an ≤ a.

Since a−ε < aN ≤ an ≤ a, we have |a−an| < ε, which is what we needed
to show.

Exercise 2: Define a sequence {xn} to be eventually bounded above by a if
there is N such that

(∀n ≥ N)[xn ≤ a],

and eventually bounded below by b if there is M such that

(∀n ≥M)[xn ≥ b].

(c.) Complete the following, using the concepts “eventually bounded above”
and “eventually bounded below”:

The sequence {xn} converges to the real number L if and only if

Claim: The sequence {xn} converges to the real number L if and only if,
for every ε > 0, the sequence {xn} is eventually bounded above by L+ ε and
eventually bounded below by L− ε.
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Exercise 3: A sequence {an} is called a Cauchy sequence if it satisfies

(∀ε > 0)(∃N ∈ Z+)(∀m, n ≥ N)[|am − an| < ε].

This says that by going far enough out in the sequence, you can guarantee
that am and an are close to each other, regardless of how far apart m and n
are.

(a.) Show that the sequence {an} given by

an =
n∑

k=0

3(.24)k

is a Cauchy sequence.

Let r = .24. Then we have

an =
n∑

k=0

3rk

and, for m > n,

0 < am−an =
m∑

k=n+1

3rk = 3rn

m−n∑
i=1

rk = 3rn 1− rm−n+1

1− r
< 3rn 1

1− r
=

3

.76
rn.

We will use the fact that since 0 < r < 1, the sequence {rn} converges to
0 and is decreasing.

To show {an} is a Cauchy sequence, let ε > 0, and choose N such that
3

.76
rN < ε. (We can do this because {rn} converges to 0.)
Now, suppose m, n ≥ N , and without loss of generality say m > n. Using

the fact that for N ≤ n we have rN ≥ rn, we can write

0 < am − an ≤
3

.76
rn ≤ 3

.76
rN < ε.

Therefore |an − an| < ε for all n, m < N , which is what we needed to show.
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Exercise 4: Give an example of a sequence {an} that is not a Cauchy
sequence, but that does satisfy

(∀ε > 0)(∃N ∈ Z+)(∀n ≥ N)[|an+1 − an| < ε].

This says merely that by going far enough out in the sequence, you can
guarantee that an is close to an+1.

For this problem in particular, you might want to describe your sequence
by writing out enough terms to make a pattern apparent, rather than trying
to find a formula for an. You need not prove anything. If it is not obvious
that your sequence works, you should explain informally why it does.

Hint: You can go a long distance in tiny steps by taking many steps.

Possible Solution:

(0, 1, 11
2
, 2, 21

3
, 22

3
, 3, 31

4
, 31

2
, 33

4
, 4, 41

5
, . . . )

I think it’s obvious that this works, but here’s a brief, informal explana-
tion, anyway:

This sequence approaches +∞, so no matter how large N is, we can find
n, m ≥ N such that an and am are far apart. However, for every natural
number m, there is an N such that aN = m, and for all n ≥ N we have
|an+1 − an| < 1

m
.

Exercise 6: Suppose {xn} is a Cauchy sequence.

(a.) Show {xn} is bounded.

This is proven in the textbook.

(b.) Given that {xn} is a Cauchy sequence, what can you say about the sets

A = {a | {xn} is eventually bounded above by a}

B = {b | {xn} is eventually bounded below by b}?

We will argue somewhat intuitively, using the idea that “{xn} is eventu-
ally bounded above by a” means that, if n is large enough, we must have
xn ≤ a, and similarly for “eventually bounded below”.
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Since {xn} is bounded, it is bounded both above and below, so A 6= ∅
and B 6= ∅.

It is not hard to see that if a is in A, so is every number y > a, and if b
is in B, so is every number y < b.

Furthermore, if a ∈ A and b ∈ B, then b ≤ a. (For large enough n, we
must have both b ≤ xn, since {xn} is eventually bounded below by b, and
xn ≤ a, since {xn} is eventually bounded above by a.)

That is, every element of A is an upper bound for B, and every element of
B is a lower bound for A. Therefore, A is bounded below, and has a greatest
lower bound a, and B is bounded above, and has a least upper bound b.

We must have b ≤ a.
We can show that, in fact, b = a. (Here is the first time we use the fact

that {xn} is a Cauchy sequence; everything we have said up until now applies
to any bounded sequence.)

Suppose not, and we have a − b = h > 0. Using the fact that {xn} is
a Cauchy sequence, we can find N such that, for all n, m ≥ N , we have
|xn − xm| < h

3
. In particular, for all n ≥ N (setting m = N), we have

xN − h
3

< xn < xN + h
3
.

This means that {xn} is eventually bounded below by xN − h
3
, and so

xN − h
3
∈ B. Similarly xN + h

3
∈ A. Therefore, since b is an upper bound for

B and a is a lower bound for A, we have xN − h
3
≤ b ≤ a ≤ xN + h

3
. But then

a and b both lie in an interval of length 2h
3

, contradicting our assumption
that their difference was h.

This proves a = b.
Set L = a = b. We can now prove that {xn} converges to L. By problem

(2)(c) above, it is enough to show that, for every ε > 0, the sequence is
eventually bounded above by L + ε and eventually bounded below by L− ε.
That is, we must show that L + ε ∈ A, and L− ε ∈ B.

To show that L + ε ∈ A, we use the fact that L = a is the greatest lower
bound for A. Therefore, L + ε is not a lower bound for A, and there is an
a ∈ A such that a ≤ L + ε. But then also L + ε ∈ A.

The proof that L− ε ∈ B is similar.
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