Math 35

Winter 2014 Some Sample Solutions from Wednesday, January 22

Exercise 1: Give a careful proof that a bounded increasing sequence $\{a_n\}$ converges to $a = \sup \{a_n \mid n \in \mathbb{Z}^+\}$.

Proof: Let $\{a_n\}$ be a bounded increasing sequence. Since $\{a_n\}$ is bounded, $a = \sup \{a_n \mid n \in \mathbb{Z}^+\}$ exists by the completeness axiom. We must show $\{a_n\}$ converges to a.

Let $\varepsilon > 0$.

Since a is the least upper bound of $\{a_n \mid n \in \mathbb{Z}^+\}$, then $a - \varepsilon$ is not an upper bound. Therefore there is some N such that $a_N > a - \varepsilon$.

Choose any such N. We will show that, for all $n \ge N$, we have $|a-a_n| < \varepsilon$. This will complete the proof that $\{a_n\}$ converges to a.

To do this, suppose $n \ge N$. By our choice of N, we have $a - \varepsilon < a_N$. Because the sequence is increasing, we have $a_N \le a_n$. Because a is an upper bound for the terms of the sequence, we have $a_n \le a$.

Since $a - \varepsilon < a_N \le a_n \le a$, we have $|a - a_n| < \varepsilon$, which is what we needed to show.

Exercise 2: Define a sequence $\{x_n\}$ to be *eventually bounded above* by a if there is N such that

$$(\forall n \ge N) [x_n \le a],$$

and eventually bounded below by b if there is M such that

$$(\forall n \ge M) [x_n \ge b].$$

(c.) Complete the following, using the concepts "eventually bounded above" and "eventually bounded below":

The sequence $\{x_n\}$ converges to the real number L if and only if

Claim: The sequence $\{x_n\}$ converges to the real number L if and only if, for every $\varepsilon > 0$, the sequence $\{x_n\}$ is eventually bounded above by $L + \varepsilon$ and eventually bounded below by $L - \varepsilon$.

Exercise 3: A sequence $\{a_n\}$ is called a *Cauchy sequence* if it satisfies

$$(\forall \varepsilon > 0) (\exists N \in \mathbb{Z}^+) (\forall m, n \ge N) [|a_m - a_n| < \varepsilon].$$

This says that by going far enough out in the sequence, you can guarantee that a_m and a_n are close to each other, regardless of how far apart m and n are.

(a.) Show that the sequence $\{a_n\}$ given by

$$a_n = \sum_{k=0}^n 3(.24)^k$$

is a Cauchy sequence.

Let r = .24. Then we have

$$a_n = \sum_{k=0}^n 3r^k$$

and, for m > n,

$$0 < a_m - a_n = \sum_{k=n+1}^m 3r^k = 3r^n \sum_{i=1}^{m-n} r^k = 3r^n \frac{1 - r^{m-n+1}}{1 - r} < 3r^n \frac{1}{1 - r} = \frac{3}{.76}r^n$$

We will use the fact that since 0 < r < 1, the sequence $\{r^n\}$ converges to 0 and is decreasing.

To show $\{a_n\}$ is a Cauchy sequence, let $\varepsilon > 0$, and choose N such that $\frac{3}{.76}r^N < \varepsilon$. (We can do this because $\{r^n\}$ converges to 0.)

Now, suppose $m, n \ge N$, and without loss of generality say m > n. Using the fact that for $N \le n$ we have $r^N \ge r^n$, we can write

$$0 < a_m - a_n \le \frac{3}{.76} r^n \le \frac{3}{.76} r^N < \varepsilon.$$

Therefore $|a_n - a_n| < \varepsilon$ for all n, m < N, which is what we needed to show.

Exercise 4: Give an example of a sequence $\{a_n\}$ that is *not* a Cauchy sequence, but that does satisfy

$$(\forall \varepsilon > 0) (\exists N \in \mathbb{Z}^+) (\forall n \ge N) [|a_{n+1} - a_n| < \varepsilon].$$

This says merely that by going far enough out in the sequence, you can guarantee that a_n is close to a_{n+1} .

For this problem in particular, you might want to describe your sequence by writing out enough terms to make a pattern apparent, rather than trying to find a formula for a_n . You need not prove anything. If it is not obvious that your sequence works, you should explain informally why it does.

Hint: You can go a long distance in tiny steps by taking many steps.

Possible Solution:

 $(0, 1, 1\frac{1}{2}, 2, 2\frac{1}{3}, 2\frac{2}{3}, 3, 3\frac{1}{4}, 3\frac{1}{2}, 3\frac{3}{4}, 4, 4\frac{1}{5}, \dots)$

I think it's obvious that this works, but here's a brief, informal explanation, anyway:

This sequence approaches $+\infty$, so no matter how large N is, we can find $n, m \ge N$ such that a_n and a_m are far apart. However, for every natural number m, there is an N such that $a_N = m$, and for all $n \ge N$ we have $|a_{n+1} - a_n| < \frac{1}{m}$.

Exercise 6: Suppose $\{x_n\}$ is a Cauchy sequence.

(a.) Show $\{x_n\}$ is bounded.

This is proven in the textbook.

(b.) Given that $\{x_n\}$ is a Cauchy sequence, what can you say about the sets

 $A = \{a \mid \{x_n\} \text{ is eventually bounded above by } a\}$ $B = \{b \mid \{x_n\} \text{ is eventually bounded below by } b\}?$

We will argue somewhat intuitively, using the idea that " $\{x_n\}$ is eventually bounded above by a" means that, if n is large enough, we must have $x_n \leq a$, and similarly for "eventually bounded below". Since $\{x_n\}$ is bounded, it is bounded both above and below, so $A \neq \emptyset$ and $B \neq \emptyset$.

It is not hard to see that if a is in A, so is every number y > a, and if b is in B, so is every number y < b.

Furthermore, if $a \in A$ and $b \in B$, then $b \leq a$. (For large enough n, we must have both $b \leq x_n$, since $\{x_n\}$ is eventually bounded below by b, and $x_n \leq a$, since $\{x_n\}$ is eventually bounded above by a.)

That is, every element of A is an upper bound for B, and every element of B is a lower bound for A. Therefore, A is bounded below, and has a greatest lower bound \overline{a} , and B is bounded above, and has a least upper bound \overline{b} .

We must have $b \leq \overline{a}$.

We can show that, in fact, $\overline{b} = \overline{a}$. (Here is the first time we use the fact that $\{x_n\}$ is a Cauchy sequence; everything we have said up until now applies to any bounded sequence.)

Suppose not, and we have $\overline{a} - \overline{b} = h > 0$. Using the fact that $\{x_n\}$ is a Cauchy sequence, we can find N such that, for all $n, m \ge N$, we have $|x_n - x_m| < \frac{h}{3}$. In particular, for all $n \ge N$ (setting m = N), we have $x_N - \frac{h}{3} < x_n < x_N + \frac{h}{3}$.

This means that $\{x_n\}$ is eventually bounded below by $x_N - \frac{h}{3}$, and so $x_N - \frac{h}{3} \in B$. Similarly $x_N + \frac{h}{3} \in A$. Therefore, since \overline{b} is an upper bound for B and \overline{a} is a lower bound for A, we have $x_N - \frac{h}{3} \leq \overline{b} \leq \overline{a} \leq x_N + \frac{h}{3}$. But then \overline{a} and \overline{b} both lie in an interval of length $\frac{2h}{3}$, contradicting our assumption that their difference was h.

This proves $\overline{a} = \overline{b}$.

Set $L = \overline{a} = \overline{b}$. We can now prove that $\{x_n\}$ converges to L. By problem (2)(c) above, it is enough to show that, for every $\varepsilon > 0$, the sequence is eventually bounded above by $L + \varepsilon$ and eventually bounded below by $L - \varepsilon$. That is, we must show that $L + \varepsilon \in A$, and $L - \varepsilon \in B$.

To show that $L + \varepsilon \in A$, we use the fact that $L = \overline{a}$ is the greatest lower bound for A. Therefore, $L + \varepsilon$ is not a lower bound for A, and there is an $a \in A$ such that $a \leq L + \varepsilon$. But then also $L + \varepsilon \in A$.

The proof that $L - \varepsilon \in B$ is similar.