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Exercise 1: Explain what is wrong with the following things that could be
written by calculus students confused about limits.

Lolim Y 4331350 lim =6
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3. lim (x sin (-)) - (lim x) (hm sin (-)) —0 <lim sin <->) — 0.
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4. lim f(z) = L means that f(z) gets close to L but never equals L.

Solution:
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1. It makes no sense to say lim = x + 3, since the expression on

r—3 I —
the left of the equals sign denotes a number, and the expression on the

right denotes a function of x.
It also makes no sense to say lim = 6, since the expression on the left

r—3

of the equals sign doesn’t denote anything at all.
This should read
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2. lim is a number, and it is not approximately equal to 1, it is

T—00 I

equal to 1. This should read lim = 1.

z—oo x + 1
However, we could say, somewhat loosely, that for very large values of

~ 1.

x we have
T+



3. The theorem that “the limit of the product is the product of the limits”
can be applied only when the relevant limits (the limits of the factors)

1
exist. We could apply exactly the same reasoning with sin <—) re-
x

1
placed by — to get
x

iy« (5)) = (ime) (1 (5)) =0 (1 (5)) =

which is clearly wrong.

1
Of course, it is true that lim (x sin (—)) = 0. We proved this using

Tr— X

the squeeze theorem.

4. It is not correct to say “f(x) never equals L.” We can have lim f(z) = L

r—c

and also have f(x) = L for some (or many, or all) values of x near c.
As just one example, for f(z) =z ( sin— |, we have liH(l) f(z) =0, and
€T T—

every open interval containing 0 contains infinitely many points z for

which f(x) = 0.

Exercise 2: We saw that the function

fx) =

1 if z is rational;
0 if z is irrational;

is not continuous at any point.
Define a function that is continuous at 0 but nowhere else.

1
Define a function that is discontinuous at every point — (where n is a
n

natural number), but continuous everywhere else (including at 0).

Solution:
x if x is rational;
f(z) = P
—x if x is irrational.
x if v = % for some natural number n;
g(w) = .
—x  otherwise.



Exercise 3: Suppose that f is continuous on [0, co) and lim f(x) exists.
(Note, this means that lim f(z) is a finite number.) Show that f is uniformly

continuous on [0, 00).
Recall, this means that

(Ve > 0)(30 > 0)(Va,y € [0,00))(Jz —y| <0 = |f(z) — f(v)| <e),

where d may depend on € but not on x or y.
We have seen that if a function is continuous on a closed, bounded interval
la, b], then it is uniformly continuous there. This may be useful.

Solution:
Suppose lim f(x) = L.
Let € > 0. Because lim f(x) = L, there is some b such that, for all x > b,

we have |f(z) — L| < %.
Because f is uniformly continuous on the closed interval [0, b + 1], there
is some ¢ > 0 such that, for all z,y € [0,b+ 1], we have

lz -yl <0 = |f(z) - fly)| <e.

We may safely assume 6 < 1.

Now, suppose that z,y € [0,00) and |z —y| < §. Since |z —y| < 1, either
both x and y are less than b+ 1, or both x and y are greater than b. In the
first case, x and y are both in [0,b+ 1], and |z — y| < J, so by our choice of
d, we have |f(z) — f(y)| < e. In the second case, both = and y are greater

than b, so by our choice of b, we have |f(x) — L| < g and |f(y) — L] < E, SO

it follows that |f(z) — f(y)] < e. ’

Putting the two cases together, we see that if z,y € [0, 00) and |z —y| < 0,
then |f(x) — f(y)| < e. Since for any € > 0 we can choose such a ¢ > 0, this
shows f is uniformly continuous on [0, c0).

Exercise 4: Monday’s exercises culminated in an example showing that f
can be continuous on a closed, bounded interval [a, b], but not of bounded
variation on [a.b].

Show that if f is continuous on [a, b], and its derivative f’ is also contin-
uous on [a,b], then f is of bounded variation on [a,b]. You may use basic
facts about derivatives from calculus, including the Mean Value Theorem:
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If f is differentiable on [c, d], then there is a point z € (¢, d) such

that f/(z) = Jd) = /o) (dc)i — f ©)

Solution:

Suppose f and [a,b] are as specified. Because the derivative of f is con-
tinuous on [a, b], it is also (by the Extreme Value Theorem) bounded on [a, b].
Let M be a bound; that is, for all ¢ € [a, b], we have |f'(c)| < M.

Suppose a = xg < x1 < -+ < T,_1 < T, = b is any partition of [a,b].
For any ¢ with 1 < ¢ < n, by the Mean Value Theorem, we have a point

z € [x;_1,x;] such that f'(z) = fw:) = f(%;l).

Ti — Ti-1
Since | f'(z)] < M, we have flw:) = J@i) < M, or
Ty — Tj—1

\f(z:) — flaima] < Mz — x| = M(z; — x4-1).

From this, we see that

n n

Z () = flwi)] <D M(z—w;0) = MY (wi—wi1) = M(2,—20) = M(b—a).

i=1 =1

Since V(f, [a,b]) is the supremum of the set of all such sums, this shows that
V(f[a,b]) < M.
In particular, f is of bounded variation on [a.b].



