Math 35

Winter 2014

Monday, February 17
 Sample Solutions

Recall some definitions and results from the textbook:
A partition of an interval $[c, d]$ is a finite set of points $\left\{x_{i} \mid 0 \leq i \leq n\right\}$ such that $c=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=d$.

If $f:[a, b] \rightarrow \mathbb{R}$ and $[c, d] \subseteq[a, b]$, then the variation of f on $[c, d]$ is

$$
V(f,[c, d])=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right\}
$$

where the supremum is taken over all partitions of $[c, d] . V(f,[c, d])$ may be a non-negative real number, or $+\infty$.

The function f is of bounded variation on $[c, d]$ if $V(f,[c, d])$ is finite.
Functions of bounded variation (on $[c, d]$) are, in particular, bounded, and sums, products, and sometimes quotients of functions of bounded variation are themselves of bounded variation. (The additional condition for $\frac{f}{g}$ to be of bounded variation, provided f and g are, is that $\frac{1}{g}$ is bounded.)

If $a<c<b$, then

$$
V(f,[a, b])=V(f,[a, c])+V(f,[c, b])
$$

Exercise 1: Show that if f is monotone on $[a, b]$, then f is of bounded variation on $[a, b]$, and in fact $V(f,[a, b])=|f(b)-f(a)|$. (Note that f need not be continuous.)

Suppose that f is increasing on $[a, b]$. (The argument for decreasing f is similar.) Then for any partition of $[a, b]$, and any i, we have $f\left(x_{i}\right) \geq f\left(x_{i-1}\right)$, and so $\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|=f\left(x_{i}\right)-f\left(x_{i-1}\right)=-f\left(x_{i-1}\right)+f\left(x_{i}\right)$, and so

$$
\begin{aligned}
\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| & =\sum_{i=1}^{n}\left(-f\left(x_{i-1}\right)+f\left(x_{i}\right)\right) \\
& =-f\left(x_{0}\right)+f\left(x_{1}\right)-f\left(x_{1}\right)+f\left(x_{2}\right)-\cdots-f\left(x_{n-1}\right)+f\left(x_{n}\right) \\
& =f\left(x_{n}\right)-f\left(x_{0}\right) \\
& =f(b)-f(a)
\end{aligned}
$$

Therefore,

$$
V(f,[a, b])=\sup \left\{\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|\right\}=f(b)-f(a)
$$

Exercise 2: Find $V(f,[0,2 n \pi])$, if $f(x)=\sin x$.
We will use Exercise 1 and the fact cited on page 1,
(*) If $a<c<b$, then

$$
V(f,[a, b])=V(f,[a, c])+V(f,[c, b])
$$

First, for simplicity, we consider the case $n=1$. We break the interval $[0,2 \pi]$ up into three intervals on which $f(x)$ is monotone, $I_{1}=\left[0, \frac{\pi}{2}\right], I_{2}=$ $\left.\left[\frac{\pi}{2}, \frac{3 \pi}{2}\right], I_{3}=\frac{3 \pi}{2}, 2 \pi\right]$. By Exercise 1,

$$
\begin{gathered}
V\left[f, I_{1}\right]=\left|f\left(\frac{\pi}{2}\right)-f(0)\right|=1 \\
V\left[f, I_{2}\right]=\left|f\left(\frac{3 \pi}{2}\right)-f\left(\frac{\pi}{2}\right)\right|=2 \\
V\left[f, I_{1}\right]=\left|f(2 \pi)-f\left(\frac{3 \pi}{2}\right)\right|=1
\end{gathered}
$$

Therefore, by $\left({ }^{*}\right)$,

$$
V(f,[0,2 \pi])=1+2+1=4
$$

Applying this same strategy to the interval $[0,2 n \pi]$, we get

$$
V(f,[0,2 n \pi])=4 n
$$

Exercise 3: Show that the function f defined by

$$
f(x)= \begin{cases}\sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is not of bounded variation on $[0,1]$.
Solution: For any n, we can consider the partition $x_{0}=0, x_{i}=\frac{2}{(2 n-i+2) \pi}$ for $0<i \leq 2 n, x_{2 n+1}=1$. For $0<i \leq n$, we have $f\left(x_{i}\right)=\sin \frac{(2 n-i+2) \pi}{2}$, so $f\left(x_{i}\right)=0$ if i is even $\left(f\left(x_{0}\right)=0\right.$ as well) and $f\left(x_{i}\right)= \pm 1$ if i is odd. In any case, for $1 \leq i \leq 2 n$ we have $\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|=1$, and so

$$
\sum_{i=1}^{2 n+1}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right| \geq \sum_{i=1}^{2 n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|=2 n
$$

This shows that $V(f,[0,1]) \geq 2 n$. Since this holds for every n, this shows that f is not of bounded variation on $[0,1]$.

Exercise 4: Show that for any interval $[a, b]$, any $\varepsilon>0$, and any $M>0$, there is a continuous function f on $[a, b]$ such that:

1. $f(a)=f(b)=0$.
2. $(\forall x \in[a, b])(|f(x)|<\varepsilon)$.
3. $V(f,[a b]) \geq M$.

Solution: One solution is, choosing n such that $\frac{1}{n}<\varepsilon$,

$$
f(x)=\frac{1}{n} \sin \left(M n\left(\frac{(x-a) \pi}{b-a}\right)\right) .
$$

To see this works, note that as x goes from a to $b, x-a$ goes from 0 to $b-a, \frac{(x-a) \pi}{b-a}$ goes from 0 to π, and $M n\left(\frac{(x-a) \pi}{b-a}\right)$ goes from 0 to $M n \pi$; therefore, $f(x)$ goes from 0 to $\pm \frac{1}{n}$ and back $M n$ times, making the variation $V(f,[0,1])$ equal to $2 M n\left(\frac{1}{n}\right)=2 M$.

Exercise 5: Show there is a function f that is continuous on $[0,1]$ but is not of bounded variation on $[0,1]$.

Solution: For each n, let f_{n} be a function on the interval $\left[\frac{1}{n+1}, \frac{1}{n}\right]$ with variation $V\left(f_{n},\left[\frac{1}{n+1}, \frac{1}{n}\right]\right)=n,\left|f_{n}(x)\right| \leq \frac{1}{n}$, and $f\left(\frac{1}{n+1}\right)=f\left(\frac{1}{n}\right)=0$. (An example of such a function is given in Exercise 4.) Then define f on $[0,1]$ by

$$
f(x)= \begin{cases}f_{n}(x) & \text { if } \frac{1}{n+1}<x \leq \frac{1}{n} \\ 0 & \text { if } x=0\end{cases}
$$

