Math 35 Winter 2014 Convergence of Sequences: Example Proofs

Proposition: If the sequence $\{a_n\}$ converges to the real number a and the sequence $\{b_n\}$ converges to the real number b, then the sequence $\{a_n + b_n\}$ converges to the real number a + b.

Proof: Suppose that $\{a_n\}$ converges to a and $\{b_n\}$ converges to b. We must show $\{a_n + b_n\}$ converges to a + b.

To show this, let $\varepsilon > 0$. We must show there is N such that, for all $n \ge N$, we have $|(a_n + b_n) - (a + b)| < \varepsilon$.

Because $\{a_n\}$ converges to a, there is a number N_a such that, for all $n \ge N_a$, we have $|a_n - a| < \frac{\varepsilon}{2}$.

Because $\{b_n\}$ converges to b, there is a number N_b such that, for all $n \ge N_b$, we have $|b_n - b| < \frac{\varepsilon}{2}$.

Let $N = \max\{N_a, N_b\}.$

To show this works, suppose that $n \ge N$. We must show that we have $|(a_n + b_n) - (a + b)| < \varepsilon$.

Since $n \ge N \ge N_a$, we have $|a_n - a| < \frac{\varepsilon}{2}$, and similarly, we also have $|b_n - b| < \frac{\varepsilon}{2}$. Using the Triangle Inequality, we have

$$|(a_n + b_n) - (a + b)| = |(a_n - a) + (b_n - b)| \le |a_n - a| + |b_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

This is what we needed to show.

Proposition: Suppose the sequence $\{b_n\}$ converges to a positive number b. Then $\left\{\frac{1}{b_n}\right\}$ converges to $\frac{1}{b}$.

Proof: Let $\varepsilon > 0$ be given. Define

$$h = \min\left\{\frac{b}{2}, \, \frac{\varepsilon b^2}{4}\right\},\,$$

and choose N such that, for all $n \ge N$, we have $|b_n - b| < h$. We must show that, for all $n \ge N$, we have $|\frac{1}{b_n} - \frac{1}{b}| < \varepsilon$. Since $h \le \frac{b}{2}$ we have 0 < b - h < b < b + h, and so $\frac{1}{b+h} < \frac{1}{b} < \frac{1}{b-h}$. For $n \ge N$, we also have $0 < b - h < b_n < b + h$, and so $\frac{1}{b+h} < \frac{1}{b_n} < \frac{1}{b-h}$. Therefore, since $\frac{1}{b_n}$ and $\frac{1}{b}$ both lie between $\frac{1}{b+h}$ and $\frac{1}{b-h}$, we have

$$\left|\frac{1}{b_n} - \frac{1}{b}\right| < \left|\frac{1}{b-h} - \frac{1}{b+h}\right|,$$

and if we can show that $\left|\frac{1}{b-h} - \frac{1}{b+h}\right| \leq \varepsilon$, we will be done. Since $h \leq \frac{b}{2}$, we have $b-h \geq \frac{b}{2}$ and b+h > b, so $(b-h)(b+h) > \frac{b^2}{2}$, and

$$\frac{1}{(b-h)(b+h)} < \frac{2}{b^2}.$$

We will use this in the following calculation.

$$\frac{1}{b-h} - \frac{1}{b+h} = \frac{2h}{(b-h)(b+h)} < 2h\left(\frac{2}{b^2}\right) = h\left(\frac{4}{b^2}\right) \le \left(\frac{\varepsilon b^2}{4}\right)\left(\frac{4}{b^2}\right) = \varepsilon.$$

This is what we needed to show.

Proposition: Suppose $\{b_n\}$ is a sequence of nonzero numbers that converges to 0. Then $\{\frac{1}{b_n}\}$ diverges.

Proof: Let *L* be any real number. To show $\{\frac{1}{b_n}\}$ does not converge to *L*, set $\varepsilon = 1$, and let *N* be given. We must show there is $n \ge N$ such that

$$\left|\frac{1}{b_n} - L\right| \ge 1.$$

Choose M such that, for all $n \ge M$, we have $|b_n - 0| < \frac{1}{|L| + 1}$, and choose any n greater than $max\{N, M\}$. Then we have $|b_n| < \frac{1}{|L| + 1}$, and so

$$\left|\frac{1}{b_n}\right| > |L| + 1.$$

Using the Reverse Triangle Inequality,

$$\left|\frac{1}{b_n} - L\right| \ge \left|\left|\frac{1}{b_n}\right| - |L|\right| > 1.$$

This is what we needed to show.