Math 35

Winter 2014
Convergence of Sequences: Example Proofs
Proposition: If the sequence $\left\{a_{n}\right\}$ converges to the real number a and the sequence $\left\{b_{n}\right\}$ converges to the real number b, then the sequence $\left\{a_{n}+b_{n}\right\}$ converges to the real number $a+b$.

Proof: Suppose that $\left\{a_{n}\right\}$ converges to a and $\left\{b_{n}\right\}$ converges to b. We must show $\left\{a_{n}+b_{n}\right\}$ converges to $a+b$.

To show this, let $\varepsilon>0$. We must show there is N such that, for all $n \geq N$, we have $\left|\left(a_{n}+b_{n}\right)-(a+b)\right|<\varepsilon$.

Because $\left\{a_{n}\right\}$ converges to a, there is a number N_{a} such that, for all $n \geq N_{a}$, we have $\left|a_{n}-a\right|<\frac{\varepsilon}{2}$.

Because $\left\{b_{n}\right\}$ converges to b, there is a number N_{b} such that, for all $n \geq N_{b}$, we have $\left|b_{n}-b\right|<\frac{\varepsilon}{2}$.

Let $N=\max \left\{N_{a}, N_{b}\right\}$.
To show this works, suppose that $n \geq N$. We must show that we have $\left|\left(a_{n}+b_{n}\right)-(a+b)\right|<\varepsilon$.

Since $n \geq N \geq N_{a}$, we have $\left|a_{n}-a\right|<\frac{\varepsilon}{2}$, and similarly, we also have $\left|b_{n}-b\right|<\frac{\varepsilon}{2}$. Using the Triangle Inequality, we have
$\left|\left(a_{n}+b_{n}\right)-(a+b)\right|=\left|\left(a_{n}-a\right)+\left(b_{n}-b\right)\right| \leq\left|a_{n}-a\right|+\left|b_{n}-b\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.
This is what we needed to show.

Proposition: Suppose the sequence $\left\{b_{n}\right\}$ converges to a positive number b. Then $\left\{\frac{1}{b_{n}}\right\}$ converges to $\frac{1}{b}$.

Proof: Let $\varepsilon>0$ be given. Define

$$
h=\min \left\{\frac{b}{2}, \frac{\varepsilon b^{2}}{4}\right\}
$$

and choose N such that, for all $n \geq N$, we have $\left|b_{n}-b\right|<h$. We must show that, for all $n \geq N$, we have $\left|\frac{1}{b_{n}}-\frac{1}{b}\right|<\varepsilon$.

Since $h \leq \frac{b}{2}$ we have $0<b-h<b<b+h$, and so $\frac{1}{b+h}<\frac{1}{b}<\frac{1}{b-h}$. For $n \geq N$, we also have $0<b-h<b_{n}<b+h$, and so $\frac{1}{b+h}<\frac{1}{b_{n}}<\frac{1}{b-h}$. Therefore, since $\frac{1}{b_{n}}$ and $\frac{1}{b}$ both lie between $\frac{1}{b+h}$ and $\frac{1}{b-h}$, we have

$$
\left|\frac{1}{b_{n}}-\frac{1}{b}\right|<\left|\frac{1}{b-h}-\frac{1}{b+h}\right|
$$

and if we can show that $\left|\frac{1}{b-h}-\frac{1}{b+h}\right| \leq \varepsilon$, we will be done.
Since $h \leq \frac{b}{2}$, we have $b-h \geq \frac{b}{2}$ and $b+h>b$, so $(b-h)(b+h)>\frac{b^{2}}{2}$, and

$$
\frac{1}{(b-h)(b+h)}<\frac{2}{b^{2}} .
$$

We will use this in the following calculation.

$$
\frac{1}{b-h}-\frac{1}{b+h}=\frac{2 h}{(b-h)(b+h)}<2 h\left(\frac{2}{b^{2}}\right)=h\left(\frac{4}{b^{2}}\right) \leq\left(\frac{\varepsilon b^{2}}{4}\right)\left(\frac{4}{b^{2}}\right)=\varepsilon .
$$

This is what we needed to show.

Proposition: Suppose $\left\{b_{n}\right\}$ is a sequence of nonzero numbers that converges to 0 . Then $\left\{\frac{1}{b_{n}}\right\}$ diverges.

Proof: Let L be any real number. To show $\left\{\frac{1}{b_{n}}\right\}$ does not converge to L, set $\varepsilon=1$, and let N be given. We must show there is $n \geq N$ such that

$$
\left|\frac{1}{b_{n}}-L\right| \geq 1
$$

Choose M such that, for all $n \geq M$, we have $\left|b_{n}-0\right|<\frac{1}{|L|+1}$, and choose any n greater than $\max \{N, M\}$. Then we have $\left|b_{n}\right|<\frac{1}{|L|+1}$, and so

$$
\left|\frac{1}{b_{n}}\right|>|L|+1 .
$$

Using the Reverse Triangle Inequality,

$$
\left|\frac{1}{b_{n}}-L\right| \geq\left|\left|\frac{1}{b_{n}}\right|-|L|\right|>1
$$

This is what we needed to show.

