Math 35 Winter 2014 Axioms for the Real Numbers

These axioms are as phrased in your textbook.

Definition 1.1 A field is a nonempty set F of objects that has two operations defined on it. These operations are called addition and multiplication and are denoted in the usual way. Addition and multiplication satisfy the following properties:

- 1. $x + y \in F$ for all $x, y \in F$.
- 2. x + y = y + x for all $x, y \in F$.
- 3. (x+y) + z = x + (y+z) for all $x, y, z \in F$.
- 4. F contains an element 0 such that x + 0 = x for all $x \in F$.
- 5. For each $x \in F$ there exists $y \in F$ such that x + y = 0.
- 6. $xy \in F$ for all $x, y \in F$.
- 7. xy = yx for all $x, y \in F$.
- 8. (xy)z = x(yz) for all $x, y, z \in F$.
- 9. F contains an element 1 such that $x \cdot 1 = x$ for all $x \in F$.
- 10. For each $x \in F$ such that $x \neq 0$ there exists $y \in F$ such that xy = 1.
- 11. x(y+z) = xy + xz for all $x, y, z \in F$.

Definition 1.2 An order on a set S is a relation that satisfies the following two properties:

- 1. If $x, y \in S$ then exactly one of x < y, x = y, or y < x is true.
- 2. For all $x, y, z \in S$, if x < y and y < z, then x < z.

An ordered set is a set with an order defined on it.

Definition 1.3 An ordered field is a field F that is an ordered set with the following additional properties:

- 1. If x > 0 and y > 0 then x + y > 0.
- 2. If x > 0 and y > 0 then xy > 0.
- 3. x < y if and only if y x > 0.

 $\mathbb R$ is an ordered field that also satisfies the Completeness Axiom:

Definition 1.14(a) Let S be a nonempty set of real numbers. The set S is **bounded above** if there is a number M such that $x \leq M$ for all $x \in S$. The number M is called an **upper bound** of S.

Definition 1.15(a) Let S be a nonempty set of real numbers. Suppose S is bounded above. The number β is the **supremum** of S if β is an upper bound of S and any number less than β is not an upper bound of S. We will write $\beta = \sup S$.

Completeness Axiom: Each nonempty set of real numbers that is bounded above has a supremum.