Math 35

Winter 2014

Axioms for the Real Numbers

These axioms are as phrased in your textbook.
Definition 1.1 A field is a nonempty set F of objects that has two operations defined on it. These operations are called addition and multiplication and are denoted in the usual way. Addition and multiplication satisfy the following properties:

1. $x+y \in F$ for all $x, y \in F$.
2. $x+y=y+x$ for all $x, y \in F$.
3. $(x+y)+z=x+(y+z)$ for all $x, y, z \in F$.
4. F contains an element 0 such that $x+0=x$ for all $x \in F$.
5. For each $x \in F$ there exists $y \in F$ such that $x+y=0$.
6. $x y \in F$ for all $x, y \in F$.
7. $x y=y x$ for all $x, y \in F$.
8. $(x y) z=x(y z)$ for all $x, y, z \in F$.
9. F contains an element 1 such that $x \cdot 1=x$ for all $x \in F$.
10. For each $x \in F$ such that $x \neq 0$ there exists $y \in F$ such that $x y=1$.
11. $x(y+z)=x y+x z$ for all $x, y, z \in F$.

Definition 1.2 An order on a set S is a relation that satisfies the following two properties:

1. If $x, y \in S$ then exactly one of $x<y, x=y$, or $y<x$ is true.
2. For all $x, y, z \in S$, if $x<y$ and $y<z$, then $x<z$.

An ordered set is a set with an order defined on it.
Definition 1.3 An ordered field is a field F that is an ordered set with the following additional properties:

1. If $x>0$ and $y>0$ then $x+y>0$.
2. If $x>0$ and $y>0$ then $x y>0$.
3. $x<y$ if and only if $y-x>0$.
\mathbb{R} is an ordered field that also satisfies the Completeness Axiom:
Definition 1.14(a) Let S be a nonempty set of real numbers. The set S is bounded above if there is a number M such that $x \leq M$ for all $x \in S$. The number M is called an upper bound of S.

Definition 1.15(a) Let S be a nonempty set of real numbers. Suppose S is bounded above. The number β is the supremum of S if β is an upper bound of S and any number less than β is not an upper bound of S. We will write $\beta=\sup S$.

Completeness Axiom: Each nonempty set of real numbers that is bounded above has a supremum.

