Math 35
 Winter 2014
 Homework Assigned Monday, January 6

As usual, this homework is due at the beginning of class next Monday, January 13 .

Here are some propositions about inequalities that can be proven from the axioms for an ordered field. Your homework is to provide proofs for Propositions 2 and 5 . You may use basic facts about arithmetic (that is, addition, multiplication, subtraction, division, etc.) that do not have to do with inequalities.

Be sure to begin each proof by giving a statement of the proposition you are proving.

Note that $x>y$ is just another way of writing $y<x$.
Note also that the end of a proof is designated by the symbol \square.
Proposition 1: If $a<b$, then $a+c<b+c$.
Proof: Suppose that $a<b$. By (3) of Definition 1.3, $b-a>0$. Since by basic arithmetic

$$
b-a=(b+c)-(a+c),
$$

we have $(b+c)-(a+c)>0$. But then, by (3) of Definition 1.3 again, $a+c<b+c$.

Proposition 2: If $a>0$ then $-a<0$, and if $a<0$ then $-a>0$.
Proof: Homework.
Proposition 3: $0<1$.
Proof: First, suppose that $0<-1$. Then, by (2) of Definition $1.3,1=$ $(-1)(-1)>0$. But then, by Proposition 2 , since $1>0$ we have $-1<0$, contradicting our original supposition that $0<-1$ (and (1) of Definition 1.2, which implies that $0<-1$ and $-1<0$ cannot both be true).

Since the supposition that $0<-1$ leads to a contradiction, we know $0 \nless-1$. By basic arithmetic, $0 \neq-1$. Therefore, by (1) of Definition 1.2, we must have $-1<0$.

Now, by Proposition 2 again, we can conclude that $1=-(-1)>0$.
Proposition 4: If $a<b$ and $c>0$ then $a c<b c$.

Proof: Suppose $a<b$. Then by (3) of Definition 1.3, $0<b-a$. Since $0<c$, by (2) of Definition 1.3 we have $0<c(b-a)=b c-a c$. Therefore, by (3) of Definition 1.3, $a c<b c$.

Proposition 5: If $a<b$ and $c<0$ then $a c>b c$.
Proof: Homework.
Proposition 6: If $a \neq 0$ then $a^{2}>0$.
Proof: By (1) of Definition 1.2, either $a>0$ or $a<0$. If $a>0$, then $a^{2}=a \cdot a>0$ by (2) of Definition 1.3. If $a<0$, then by Proposition 5, multiplying by the negative number a reverses the inequality $a<0$; that is, $a^{2}=a \cdot a<a \cdot 0=0$.

