
INTEGRAL TRANSFORMS.

Abstract. This is a reference guide to the basic theory of the Laplace and

Fourier transforms and their application to ODEs.

1. Introduction

An integral transform is an operator, i.e. a map from functions to functions that
takes the form

I(f)(ξ) =
∫ ∞

−∞
K(x, ξ)f(x)dx.

The function of two-variables K is called the kernel of the transform. In general, a
lot of the properties of the transform, such as for which functions f the integral even
makes sense, depend on K, but all integral transforms have the following linearity
properties

• I(f + g) = I(f) + I(g)
• I(cf) = cI(f) for constants c.

2. The Laplace Transform

The Laplace transform is the integral transform with kernel

K(x, ξ) = χ[0,∞)(x)e−xξ.

Because the kernel is only non-zero for positive x, it is traditional to think of the
variable x as time and relabel it t. Likewise it is traditional to use s rather than ξ
here.

Equivalently we can make the definition

Definition 2.1. The Laplace transform of a function f(t) is the function

L [f ] (s) =
∫ ∞

0

f(t)e−stdt

Because the kernel decays rapidly, the Laplace transform makes sense for most
functions, in fact anything that grows exponentially fast or slower. We’d need to
consider a functions growing as rapidly as et2 or et log t to have difficulties.

Tables of standard Laplace transforms can be found many places, e.g. Logan
p.203.

Lemma 2.2. If p(x) = akxk + ak−1x
k−1 + · · ·+ a0 is a polynomial with constant

constant coefficients then for P = p(D),

L [p(D)y] (s) = p(s)L [y] (s)− sn−1y(0)− sk−2y ′(0)− · · · − y(k−1)(0).

The Laplace transform allows us to reduce the solution of inhomogeneous con-
stant coefficient linear ODEs to an algebraic exercise in partial fractions via the
following theorem. This is especially useful for forward-time only equations (i.e.
only for t ≥ 0) as we can also normalize initial conditions.
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Theorem 2.3. Suppose that p is a polynomial as before then there exists a C∞

function g such that

L [g] (s) =
1

p(s)
.

In addition, u(t) = χ[0,∞)(t)g(t) is then a fundamental solution for the operator
P = p(D).

Furthermore for any piecewise continuous differentiable function f(t) (with finite
jumps) the convolution y = u ∗ (χ[0,∞)f) is continuous and defined for all time and
solves

Py = χ[0,∞)f

together with the initial conditions y(0) = y ′(0) = · · · = y(n−1)(0) = 0

Remark 2.4. In fact, it can be shown that the function g(t) is the unique solution
to the homogenous IVP, Py = 0, y(0) = · · · = y(k−2)(0) = 0, y(k−1)(0) = 1.

Example 2.5. Solve the initial value problem

y ′′′ + y = χ[0,∞)(t) log(t), y(0) = 0, y ′(0) = 0, y ′′(0) = 0.

Here we must solve L [g] (s) = 1
s3+1 for a smooth function g. Now using partial

fractions
1

1 + s3
=

1
(s + 1)(s2 − s + 1)

=
1/3

s + 1
+

2/3− s/3
s2 − s + 1

=
1
3

(
1

s + 1
− s− 1/2

(s− 1/2)2 + 3/4

)
+

1/2
(s− 1/2)2 + 3/4

Applying the inverse Laplace transform we see

g(t) =
1
3

(
e−t − et/2 cos

(
t
√

3
2

))
+

1√
3
et/2 sin

(
t
√

3
2

)
.

The solution to the IVP is then

y(t) =
∫ t

0

g(τ) log(t− τ)dτ.

�

Example 2.6. To solve with other initial conditions, e.g.

y ′′′ + y = χ[0,∞)(t) log(t), y(0) = 0, y ′(0) = 1, y ′′(0) = 0,

solve the homogeneous problem y ′′′ + y = 0 with these initial conditions by ele-
mentary methods and then add the solution from the previous example. �

3. The Fourier Transform

The Fourier transform defined by

F [u] (ξ) = û(ξ) =
∫ ∞

−∞
u(x)eixξdx

is an integral transform much like the Laplace transform. However its kernel

K(x, ξ) = eixξ = cos(xξ) + i sin(xξ)

is oscillatory and does not decay. Its theory is more complicated, but much richer
than that of the Laplace transform. Since |K(x, ξ)| ≤ 1 for all x, ξ, the Fourier
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transform makes sense (as a function) for f ∈ L1(R), but not for any periodic or
increasing functions.

Remark 3.1. It’s not easy to prove, but the Fourier transform does make sense for
functions f ∈ L2(R). Furthermore it can be shown that û ∈ L2(R) and ‖û‖L2(R) =
‖u‖L2(R). Although we shall not need this during this course, it is an example of a
powerful result in advanced Fourier analysis.

We would like to make sense of the Fourier transform for a much larger class of
functions than purely those in L1(R) (or L2). To do this we can try to think of û
as a distribution and define

û(ξ)(φ) =
∫ ∞

−∞

(∫ ∞

−∞
u(x)eixξdx

)
φ(ξ)dξ

=
∫ ∞

−∞

(∫ ∞

−∞
eixξφ(ξ)dξ

)
u(x)dx

=
∫ ∞

−∞
u(x)φ̂(x)dx

= u(x)(φ̂).

(1)

Unfortunately, there is a problem with this idea. For a test function φ, the Fourier
transform φ̂ may not be a test function. Thus we might not be able to make sense
of the final line of (1).

Remark 3.2. In fact, if both φ and φ̂ are test functions, it is possible to show
that φ = 0 everywhere. This is a surprisingly deep result, that has connections with
many fields. It is phrased as ”you cannot simultaneously localize in both space and
frequency” and thus can philosophically be thought of as a mathematical formulation
of the Heisenberg uncertainty principle.

Because of this limitation, we introduce a class of ’almost’ test functions.

Definition 3.3. The Schwartz class S is the collection of all C∞ functions f(x)
that have the property:

The product xαf (n)(x) is bounded for all α ≥ 0 and integers n ≥ 0.

Remark 3.4. This means that f and all of its decay more rapidly than any poly-
nomial as |x| → ∞. In fact the definition is equivalent to∣∣∣xαf (n)(x)

∣∣∣→ 0 as |x| → ∞

for all α ≥ 0 and n ≥ 0. In other words, any derivative of f mulitplied by any
polynomial must vanish at infinity.

The Schwartz class has many nice properties
• All test functions are Schwartz functions.
• All Schwartz functions are in L1 and so have Fourier transforms (as func-

tions).
• If f, g ∈ S then f + cg ∈ S for all constants c.
• If f ∈ S then f ′ ∈ S
• p(x)f(x) ∈ S for all polynomials p.
• xαf (n)(x) ∈ S for all α, n ≥ 0.
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Lemma 3.5. For u, v ∈ S, real constant a and polynomial p, the following proper-
ties hold:

(a) F [u + av] = û + av̂
(b) F [u(x− a)] (ξ) = eiaξû(ξ)
(c) F

[
e−iaxu

]
(ξ) = û(ξ − a)

(d) F [p(Dx)u] (ξ) = p(−iξ)û(ξ)
(e) F [p(x)u(x)] (ξ) = p(−iDξ)û(ξ)
(f) F [u(ax)] = 1

a û(ξ/a)
(g) F [u ∗ v] = ûv̂.

Many of these properties ( esp. (b), (c) ) extend naturally to imaginary and complex
constants a, but only if applying them does not introduce functions that have faster
than polynomial growth at infinity.

These properties are left as en exercise for the reader. They have an important
corollary.

Corollary 3.6. If u(x) ∈ S then û(ξ) ∈ S.

Proof: We need to show that ξα(Dξ)nû is bounded for all α, n ≥ 0. A key
observation is that for any f ∈ S

(2) |f̂(ξ)| =
∣∣∣∣∫ ∞

−∞
f(x)eixξdx

∣∣∣∣ ≤ ∫ ∞

−∞
|f(x)eixξ|dx =

∫ ∞

−∞
|f(x)|dx.

Now by Lemma 3.5

ξαDn
ξ û = inξαF [xnu(x)] = iα+nF [Dα

x (xnu)] .

But Dα(xnu) is a Schwartz function so we can use (2) to see∣∣ξαDn
ξ û
∣∣ ≤ ∫ ∞

−∞
|Dα

x (xnu(x))| dx

The integrand must decay faster than any polynomial in x, so the integral must
converge to a constant.

�

The consequence of this result is that Schwartz functions are the ideal replace-
ment for test functions when studying the Fourier transform.

Definition 3.7. A tempered distribution is a distribution that makes sense when
applied to all Schwartz functions.

Example 3.8. The delta function and its derivatives are tempered distributions.
Any piecewise continuous function with finite jumps that grows at most like a

polynomial as |x| → ∞ is a tempered distribution. (This includes functions that
decay towards both ±∞.)

Functions such as ex which have exponential growth as x →∞ are not tempered
distributions. �

Definition 3.9. The Fourier transform of a tempered distribution T is the tempered
distribution F [T ] = T̂ defined by

T̂ (φ) = T (φ̂)

for all Schwartz function φ.
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Remark 3.10. All the properties of the Fourier transform from Lemma 3.5 also
apply to tempered distributions! The argument is to use the definition to move the
transform onto the Schwartz function, apply Lemma 3.5, and then move it back.

The Fourier transform is invertible. A tedious computation yields the following
theorem

Theorem 3.11. For û(ξ) ∈ S

F−1 [û] (x) =
1
2π

∫ ∞

−∞
û(ξ)e−ixξdξ.

This extends to tempered distributions by

F−1 [T ] (φ) = T (F−1 [φ]).

The Fourier transform and its inverse are closely related by the following formula

Corollary 3.12.
û(ξ) = 2πF−1 [u] (−ξ)

and hence ̂̂u(x) = −2πu(−x).

Proof: Exercise for the reader
�

Of course, all this means that many Fourier transforms are difficult to compute.
We’ll compute some here and a table can be found at the end of these notes.

Example 3.13. The Fourier transform of the delta function:
Formally, using the definitions

F [δ(x− a)] (φ) = δ(x− a)(φ̂(x)) = δ(x− a)
(∫ ∞

−∞
φ(ξ)eixξdξ

)
=
∫ ∞

−∞
φ(ξ)eiaξdξ

Thus as a distribution
̂δ(x− a)(ξ) = eiaξ = cos(aξ) + i sin(aξ).

Informally, if we pretend δ(x − a) is a function and try to take the Fourier
transform directly we see

̂δ(x− a)(ξ) =
∫ ∞

−∞
δ(x− a)eixξdx = eiaξ.

�

Example 3.14. The Fourier transform of sinx: Note sinx is not Schwartz (or L2 ),
so the Fourier transform should be interpreted as a distribution.

Using the fact that sinx = 1
2i

(
eix − e−ix

)
, ( which follows from eiθ = cos θ +

i sin θ), we see that

sin ξ =
1
2i

(
̂δ(x− 1)− ̂δ(x + 1)

)
.

Thus we deduce that

F−1 [sin ξ] =
1
2i

(δ(x− 1)− δ(x + 1))
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Using Corollary 3.12 we see that

F [sinx] (ξ) =
π

i
(δ(ξ − 1)− δ(ξ + 1)) = πi (δ(ξ + 1)− δ(ξ − 1)) .

�

Example 3.15. We can sometimes push things even a little further and take Fourier
transforms of functions that technically aren’t even tempered distributions. For ex-
ample u(x) = 1

x has an infinite jump discontinuity at 0, so isn’t even a distribution.
However applying Corollary 3.12

F [xu(x)] = F [1] = F [F [δ]] = −2πδ(−ξ) = 2πδ(ξ).

(Ex: show that δ(ax) = 1
aδ(x)). But by Lemma 3.5

F [xu(x)] = −iDξû

and so
F [1/x] (ξ) = C − 2πiχ[0,∞)(ξ)

for some constant C.
In fact (by computing the inverse Fourier transform of the rhs) , it can be shown

that C = πi and so

F [1/x] (ξ) = πiχ[0,∞)(−ξ)− πiχ[0,∞)(ξ).

The most important consequence of this is that

F−1

[
1

ξ − a

]
=

1
2

(sin(ax)− i cos(ax))
(
χ[0,∞)(−x)− χ[0,∞)(x)

)
The three cases are due to the need to avoid exponential growth in various inte-
grands. �

Example 3.16. Find a fundamental solution for the operator p(D) = D2 + 2D + 2:

By Lemma 3.5,

F [p(D)u] = p(−iξ)û = (−ξ2 − 2iξ + 2)û = −(ξ + 1 + i)(ξ − 1 + i)û.

Now δ̂ = 1, so if we Fourier transform both sides of the equation

p(D)u = δ

we get

û = − 1
(ξ + 1 + i)(ξ − 1 + i)

=
1/2

ξ + 1 + i
− 1/2

ξ − 1 + i
.

Thus by Example 3.15,

u(x) =
1
4
(
χ[0,∞)(−x)− χ[0,∞)(x)

)
e−x (sin(−x)− i cos(−x)− sin(x) + i cos(x))

=
1
2
(
χ[0,∞)(x)− χ[0,∞)(−x)

)
e−x sin(x).

�

Remark 3.17. Since every polynomial factors into linear terms over the complex
field, partial fractions is theoretically much simpler for the Fourier transform than
the Laplace transform. However, for practical problems it is often better to apply
short cuts. For example, the inverse Fourier transform of 1

a2+ξ2 can be computed
(Ex) without using Example 3.15. This provides an alternative starting point for
inverting the Fourier transform to compute a fundamental solution.



INTEGRAL TRANSFORMS. 7

Remark 3.18. Fundamental solutions computed using the Fourier transform do
not have the same initial value properties as those computed using the Laplace
transform. However, for differential equations on the whole spatial domain, they
often have global symmetry properties that make them theoretically more pleasant to
use. Generally speaking, we use the Laplace transform with time, and the Fourier
transform with space.
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Table of Fourier Transforms

f(x) F [f ] (ξ)

u(x) û(ξ)
p(x)u(x) p(−iDξ)û(ξ)
p(D)u(x) p(−iξ)û(ξ)
u(x− a) eiaξû(ξ)
e−iaxu(x) û(ξ − a)
u ∗ v(x) û(ξ)v̂(ξ)
u(ax) 1

a û(ξ/a)
û(x) −2πu(−ξ)

δ(x− a) eiaξ

eiax 2πδ(ξ − a)

sinx πi (δ(ξ + 1)− δ(ξ − 1))

cos x π (δ(ξ + 1) + δ(ξ − 1))
1
2 (δ(x− a)− δ(x + a)) sin(aξ)
1
2 (δ(x− a) + δ(x + a)) cos(aξ)

xn, n = 0, 1, . . . (−i)n2πδ(n)(ξ)
1
2ae−a|x| 1

a2+ξ2

1
2 (χ[0,∞)(−x)− χ[0,∞)(x)) sin(x) 1

ξ2−a2

e−ax2 √
π
a e−

ξ2

4a

sinc(x) = sin x
x πχ[−1,1](ξ)

1
2aχ[−a,a](x) sinc(aξ) = sin(aξ)

aξ

sinc2(x) π
2 χ[−2,2](ξ)(2− |ξ|)

1
2 (sin(ax)− i cos(ax))

(
χ[0,∞)(−x)− χ[0,∞)(x)

)
1

ξ−a

−ie−bxe−iaxχ[0,∞)(x), b > 0 1
ξ−a+ib

iebxe−i(axχ[0,∞)(−x), b > 0 1
ξ−a−ib


