
DISTRIBUTIONS AND FUNCTION SPACES.

Abstract. This is a reference guide to the basic definitions and properties of

distributions.

1. Function spaces

Throughout our discussion of differential equations we shall need to make differ-
ent technical assumptions about the functions under consideration. In this section,
we group together the definitions of the relevant function spaces.

Definition 1.1.

• The set Ck(R) consists of all real-valued functions f(x) on the real line such
that all derivatives of order ≤ k exist and each derivative f (j)(x) j ≤ k
is continuous on all of R. We use C∞(R) for functions with continuous
derivatives of all orders. When k = 0 we shall normally just write C(R)
instead of C0(R).

• The set Ck
0 (R) consists of the Ck functions that vanish outside some finite

interval [a, b]. Such functions are said to have compact support.
• The set Lp(R), p ≥ 1 consists of all (integrable) real-valued functions f(x)

such that ∫ ∞

−∞
|f(x)|pdx <∞.

For a function f ∈ Lp(R) we define the Lp-norm of f to be

‖f‖Lp(R) =
(∫ ∞

−∞
|f(x)|pdx

)1/p

.

(We won’t discuss here exactly what integrable means, but any piecewise
continuous function is integrable.)

Example 1.2.

(a) Consider f(x) =

{
0, x < 0
x2, x ≥ 0

. Then we can compute that

f ′(x) =

{
0, x < 0
2x, x ≥ 0

, f ′′(x) =

{
0, x < 0
2, x > 0

Thus f is in C1(R) but not C2(R). Now f does not vanish for x > b for
any b ∈ R so f does not have compact support.

(b) The function f(x) =


0, x < −1
(x− 1)2(x+ 1)2, −1 ≤ x ≤ 1
0, x > 1

has compact sup-

port as it vanishes outside [−1, 1]. It is also in C1(R), so f ∈ C1
0 (R).
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(c) For any subset E ⊂ R, the characteristic function of E is the function

χE =

{
1, x ∈ E
0, x /∈ E

. The characteristic function of any set E 6= R, ∅ is not

continuous, but if E = [a, b] a finite interval, then χE ∈ Lp(R) for all p ≥ 1.

(d) The function f(x) =
χ[1,∞](x)

x
is in L2(R) but not L1(R). Why?∫ ∞

−∞
|f(x)|2dx =

∫ ∞

1

1
x2
dx = − 1

x

∣∣∣∞
1

= 1 <∞

but ∫ ∞

−∞
|f(x)|1dx =

∫ ∞

1

1
x
dx = lnx

∣∣∣∞
1

= ∞.

(e) All functions f ∈ Ck
0 (R) for k ≥ 0 are contained in Lp(R) for all p ≥ 1.

Why? The function f(x) has contact support, so is only non-zero on some
interval [a, b]. But f ∈ C([a, b]) so it must be bounded above and below on
[a, b]. Thus there is some K > 0 such that −K ≤ f(x) ≤ K everywhere.
This implies that |f(x)|p ≤ Kp for all x and so we see

‖f‖Lp(R) ≤ (b− a)1/pK

and f must be in Lp(R).
�

Note: The next lot of definitions are technically necessary for some of the the-
ory, but will largely live behind the scenes. Don’t get too hung up on trying to
understand them immediately.

Definition 1.3. These function spaces each have their own notion of convergence.
• A sequence of (fn) of Lp functions Lp-converges to f ∈ Lp iff 1

‖f − fn‖Lp(R) → 0 as n→∞.

• A sequence (fn) of Ck
0 functions Ck-converges to f ∈ Ck

0 iff there is some
finite interval [a, b] such that all of the fn and f vanish outside [a, b] and

max
x∈[a,b]

|fn(x)− f(x)| → 0 as n→∞.

(There is a notion of convergence for Ck not just Ck
0 but it is more difficult

to state and work with.)

Example 1.4.
(a) For any f ∈ L1(R), e.g. f(x) = 1

1+x2 , the sequence of function fn(x) =
f(x)χ[−n,n](x) converge to f(x) in L1. For out example∫ ∞

n

1
1 + x2

dx =
π

2
− tan−1(n) → 0 as n→∞.

A similar statement is true for
∫ −n

−∞ so ‖f − fn‖L1(R) → 0.
(b) It’s hard to show, but its true that for any f ∈ Lp(R) there is a sequence

of functions fn ∈ C∞0 (R) such that fn Lp-converges to f .
�

1iff means ”if and only if”
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2. Distributions

The space C∞0 (R) of functions that have continuous derivatives of all orders and
vanish outside some finite interval [a, b] have another name. They are often called
test functions.

Test functions behave incredibly well when integrated and differentiated. In
particular,

(1) f ∈ C∞0 (R) =⇒ f ′ ∈ C∞0 (R)

i.e. the set of test functions is stable under differentiation. (Other useful spaces
have this stability property: one frequently used in differential equations is the
Schwartz class, p.87 in Logan.)

Furthermore, they have the following key property: if f ∈ C1(R) and φ is a
test function then φf ′ is continuous with compact support and hence in L1(R).
Integration by parts then yields

(2)
∫ ∞

−∞
f ′(x)φ(x)dx = −

∫ ∞

−∞
f(x)φ ′(x).

In other words, we can move the derivative onto the test function. As we shall soon
see, this will allow us to generalize both the idea of a function and the idea of a
derivative.

Definition 2.1. A distribution T is a map from C∞0 (R) to R, ( i.e. a procedure
that takes a test function as input and spits out a real number) that satisfies

• T (φ+ ψ) = T (φ) + T (ψ) for all test functions φ, ψ.
• T (cφ) = cT (φ) for all constants c and test functions φ.
• If φn converges to φ in C∞0 then T (φn) → T (φ).

Note: this third convergence property is technically necessary, but in the cases
we shall consider is always true and will be pushed into the background.

Example 2.2.

(a) Every piecewise continuous function f can be thought of as a distribution
by considering f to be the equal to the map Tf defined by

Tf (φ) =
∫ ∞

−∞
f(x)φ(x)dx

(Because φ is a test function this integral always exists and is finite)
(b) Caution: different functions can be the same when thought of as distri-

butions, e.g. the Heaviside function χ[0,∞) and χ(0,∞) are the same as
distributions. Fortunately different continuous functions yield different
distributions.

(c) Not every distribution comes from a function. The inaptly named Dirac
delta ”function” at p is defined by

δp(φ) = φ(p).

This is a distribution that cannot be expressed as Tf for any function f .
The delta ”function” can be thought of as an infinitely thin, infinitely high
spike with area 1.
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(d) Products: If f is a C∞ function and T is a distribution, we can define the
product fT as a distribution by

(fT )(φ) = T (fφ).

Unless one is the distribution associated to a function, the product of two
distributions is generally meaningless!

�

Remark 2.3. Distributions formally only make sense when applied to a test func-
tion. However, specific examples can be applied to a wider range of functions. For
example, the delta function δ0 makes sense when applied to anything that is contin-
uous near 0. We will often apply distributions to more general functions whenever
everything still makes sense.

Similarly we can often define products of functions not in C∞ with distributions.
To define fT all we require is that T (fφ) make sense whenever φ ∈ C∞0 (R).

The integration by parts formula (2) allows us to extend the notion of derivatives
to distributions.

Definition 2.4. For a distribution T we define its (weak) derivative T ′ to be the
distribution

T ′(φ) = −T (φ ′).
(Here its useful to note that the derivative of a test function is again a test function.)

Example 2.5.
(a) If f is a C1 function then the weak distribution derivative agrees with the

usual derivative, i.e. T ′
f = Tf ′ . This follows immediately from (2).

(b) The derivative of the Heaviside function χ[0,∞) is the delta ”function” at 0.
Why?∫ ∞

−∞
χ[0,∞)(x)φ ′(x)dx =

∫ ∞

0

φ ′(x) = φ(x)
∣∣∣∞
0

= −φ(0) = −δ0(φ).

(The top limit vanishes for the last step because all test functions vanish
outside some finite interval.)

(c) Product Rule: Suppose T is a distribution and f is C∞ function. Then

(fT ) ′(φ) = T ′(fφ) + T (f ′φ).

For example,

(exχ[0,∞)) ′(φ) = δ0(exφ) +
∫ ∞

−∞
χ[0,∞)(x)exφ(x)dx

= e0φ(0) +
∫ ∞

−∞
χ[0,∞)(x)exφ(x)dx.

Or alternatively

(exχ[0,∞)) ′ = δ0 + exχ[0,∞).

�


