Definition 1 Vector space is a non empty set V if the following are met:

1. An operation, which will be called vector addition and denoted as +, is defined between any two vectors in \mathbf{V} in such a way that if \mathbf{u} and \mathbf{v} are in \mathbf{V} , then $\mathbf{u} + \mathbf{v}$ is too (i.e., \mathbf{V} is closed under addition). Furthermore,

 $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$ (commutative)

 $(\mathbf{u} + \mathbf{u}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w}).$ (associative)

2. V contains a unique zero vector $\mathbf{0}$ such that

$$\mathbf{u} + \mathbf{0} = \mathbf{u}$$

for each \mathbf{u} in \mathbf{V} .

.

3. For each **u** in **V** there is a unique vector "-**u**" in **V**, called the negative inverse of u, such that

$$\mathbf{u} + (-\mathbf{u}) = 0$$

4. Another operation, called scalar multiplication, is defined such that if \mathbf{u} is any vector in \mathbf{V} and α is any scalar, then the scalar multiple $\alpha \mathbf{u}$ is in \mathbf{V} , too (i.e., \mathbf{V} is closed under scalar multiplication). Further, we require that

$$\alpha(\beta \mathbf{u}) = (\alpha \beta) \mathbf{u} \qquad (associative)$$
$$(\alpha + \beta) \mathbf{u} = \alpha \mathbf{u} + \beta \mathbf{u} \qquad (distributive)$$
$$\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v} \qquad (distributive)$$
$$l \mathbf{u} = \mathbf{u}$$

if the vectors \mathbf{u}, \mathbf{v} are in \mathbf{V} , and α, β are scalars.

Definition 2 vector space **H** is called an inner product space if to each pair of vectors **u** and **v** in **H** is associated a number (\mathbf{u}, \mathbf{v}) such that the following rules hold:

1. $(\mathbf{u}, \mathbf{v}) = (\mathbf{v}, u)$ 2. $(\mathbf{u} + \mathbf{w}, \mathbf{v}) = (\mathbf{u}, \mathbf{v}) + (\mathbf{w}, \mathbf{v})$ 3. $(\alpha \mathbf{u}, \mathbf{v}) = \alpha(\mathbf{u}, \mathbf{v})$ 4. $(\mathbf{u}, \mathbf{u}) \ge 0$ 5. $(\mathbf{u}, \mathbf{u}) = 0 \iff \mathbf{u} = 0$

Definition 3 vector space V is called an norm space if to each vector u in V is associated a number ||u|| such that the following rules hold:

1.	$\ \mathbf{u} + \mathbf{v}\ \le \ \mathbf{u}\ + \ v\ $	(triagle inequality)	
2.	$\ \alpha \mathbf{u}\ = \mathbf{u} $	$\ \alpha \mathbf{u}\ = \alpha \ \mathbf{u}\ $	
3.	$\ \mathbf{u}\ = 0 \Leftarrow$	$\Rightarrow \mathbf{u} = 0$	