Definition 1 Vector space is a non empty set \mathbf{V} if the following are met:

1. An operation, which will be called vector addition and denoted as + , is defined between any two vectors in \mathbf{V} in such a way that if \mathbf{u} and \mathbf{v} are in \mathbf{V}, then $\mathbf{u}+\mathbf{v}$ is too (i.e., \mathbf{V} is closed under addition). Furthermore,

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u} \quad \text { (commutative) } \\
(\mathbf{u}+\mathbf{u})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) . \quad \text { (associative) }
\end{gathered}
$$

2. \mathbf{V} contains a unique zero vector $\mathbf{0}$ such that

$$
\mathbf{u}+\mathbf{0}=\mathbf{u}
$$

for each \mathbf{u} in \mathbf{V}.
3. For each \mathbf{u} in \mathbf{V} there is a unique vector $"-\mathbf{u} "$ in \mathbf{V}, called the negative inverse of u, such that

$$
\mathbf{u}+(-\mathbf{u})=0
$$

4. Another operation, called scalar multiplication, is defined such that if \mathbf{u} is any vector in \mathbf{V} and α is any scalar, then the scalar multiple $\alpha \mathbf{u}$ is in \mathbf{V}, too (i.e., \mathbf{V} is closed under scalar multiplication). Further, we require that

$$
\begin{array}{lll}
\qquad \alpha(\beta \mathbf{u})=(\alpha \beta) \mathbf{u} & \text { (associative) } \\
(\alpha+\beta) \mathbf{u}=\alpha \mathbf{u}+\beta \mathbf{u} & \text { (distributive) } \\
\alpha(\mathbf{u}+\mathbf{v})=\alpha \mathbf{u}+\alpha \mathbf{v} & \text { (distributive) } \\
l \mathbf{u}=\mathbf{u} & \\
\text { if the vectors } \mathbf{u}, \mathbf{v} \text { are in } \mathbf{V} \text {, and } \alpha, \beta \text { are scalars. }
\end{array}
$$

,

Definition 2 vector space \mathbf{H} is called an inner product space if to each pair of vectors \mathbf{u} and \mathbf{v} in \mathbf{H} is associated a number (\mathbf{u}, \mathbf{v}) such that the following rules hold:
1.

$$
(\mathbf{u}, \mathbf{v})=(\mathbf{v}, u)
$$

2.

$$
(\mathbf{u}+\mathbf{w}, \mathbf{v})=(\mathbf{u}, \mathbf{v})+(\mathbf{w}, \mathbf{v})
$$

3.

$$
(\alpha \mathbf{u}, \mathbf{v})=\alpha(\mathbf{u}, \mathbf{v})
$$

4.

$$
(\mathbf{u}, \mathbf{u}) \geq 0
$$

5.

$$
(\mathbf{u}, \mathbf{u})=0 \Longleftrightarrow \mathbf{u}=0
$$

Definition 3 vector space \mathbf{V} is called an norm space if to each vector \mathbf{u} in \mathbf{V} is associated a number $\|\mathbf{u}\|$ such that the following rules hold:
1.

$$
\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|v\| \quad \text { (triagle inequality) }
$$

2.

$$
\|\alpha \mathbf{u}\|=|\alpha|\|\mathbf{u}\|
$$

3.

$$
\|\mathbf{u}\|=0 \Longleftrightarrow \mathbf{u}=0
$$

