Mathematics 33

Homework \#5

Due May 10

1. (p. 26, 2, 5 points). What is your interpretation of the initial-boundary-value problem? PDE: $u_{t}=\alpha^{2} u_{x x}, 0<x<1, t>0 ;$ BCs: $u(0, t)=0, u_{x}(1, t)=1, t>0 ;$ IC: $u(x, 0)=\sin (\pi x)$, $0 \leq x \leq 1$. Can you draw rough sketches of the solution for different values of time? Will the solution come to a steady state; is this obvious?

Solution. The right boundary condition $u_{x}(1, t)=1, t>0$ means that the heat flows in with unit speed. Since the steady state solution $\bar{u}=\bar{u}(x)$ for PDE $u_{t}=\alpha^{2} u_{x x}$ is a linear function of x it implies that $\bar{u}(x)=x$. Indeed, $\bar{u}(0)=0$ and $\bar{u}_{x}(1)=1$. The sketch of the temperature distribution at different time is shown below. Notice, the bold line has slope 1 at $x=1$.

Dashed line - initial condition temperature $(t=0)$, solid - steady state solution $(t=\infty)$, bold line - temperature for intermidiate time.
2. (p. 26, 4, 5 points). Suppose a metal rod laterally insulated has an initial temperature of $20^{\circ} \mathrm{C}$ but immediately thereafter has one end fixed at $50^{\circ} \mathrm{C}$. The rest of the rod is immersed in a liquid solution temperature $30^{\circ} \mathrm{C}$. What would be the IBVP that describes this problem.

Solution. If L is the length of the rod than IC is $u(x, 0)=20,0 \leq x \leq L$. Let the temperature of the right end is kept at $50^{\circ} C$ that implies BC $u(L, t)=50$ and for the left end we have $u(0, t)=30$
for all time $t>0$.
3. (p. 31, 1, 5 points). Substitute the units of each quantity u, u_{t}, \ldots into the equation $u_{t}=$ $\alpha^{2} u_{x x}-\beta u$ to see that every term has the same units of ${ }^{\circ} \mathrm{C} / \mathrm{sec}$.

Solution. u_{t} measures the speed at which temperature changes with time, i.e. the units are ${ }^{\circ} \mathrm{C} / \mathrm{sec}$. Let us assume the length of the rod is measured in cm . Then $u_{x x}$ is measured in ${ }^{\circ} \mathrm{C} / \mathrm{cm}^{2}$ and α^{2} has units $\mathrm{cm}^{2} /$ sec so that $\alpha^{2} u_{x x}$ is measured in $\mathrm{cm}^{2} / \mathrm{sec} \times{ }^{\circ} C / \mathrm{cm}^{2}={ }^{o} C / \sec$. Parameter β must be measured in $1 / \sec$ in order to have ${ }^{\circ} \mathrm{C} / \mathrm{sec}$ for the last term, βu.
4. (p. $42,5,5$ points). What is the solution to problem 4 if the IC is changed to

$$
u(x, 0)=\sin (2 \pi x)+\frac{1}{3} \sin (4 \pi x)+\frac{1}{5} \sin (6 \pi x) .
$$

Solution. The key point to the solution is the Fourier sine expansion of $\phi(x)=u(x, 0)$. But since $u(x, 0)$ is a linear combination of sine functions we can determine the Fourier coefficients without evaluating integrals, or more precisely, $n=1, A_{1}=0, n=2, A_{2}=1, n=3, A_{3}=0$, $n=4, A_{4}=1 / 3, n=5, A_{5}=0, n=6, A_{6}=1 / 5$, and $A_{n}=0$ for $n>6$. Therefore, the solution is ($\alpha=1$)

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} A_{n} e^{-(\alpha \pi n)^{2} t} \sin (\pi n x) \\
& =e^{-4 \pi^{2} t} \sin (2 \pi x)+\frac{1}{3} e^{-16 \pi^{2} t} \sin (4 \pi x)+\frac{1}{5} e^{-36 \pi^{2} t} \sin (6 \pi x)
\end{aligned}
$$

