Mathematics 33

Homework Assignment \#3

Due Wednesday, April 19

1. (4 points). Let $C[0,1]$ denote the set of all continuous functions $f(x), x \in[0,1]$ with the scalar product defined as $(f, g)=\int_{0}^{1} f(x) g(x) d x$. Let $p_{0}(x)=1$ be the null-degree polynomial on $x \in[0,1]$. Find the first-degree polynomial $p_{1}(x)=a+b x$ such that $p_{0} \perp p_{1}$ and $\left\|p_{1}\right\|=1$.

Solution. We find a and b from the conditions

$$
\left(p_{0}, p_{1}\right)=\int_{0}^{1}(a+b x) d x=0,\left\|p_{1}\right\|^{2}=\int_{0}^{1}(a+b x)^{2} d x=1
$$

We have

$$
\begin{aligned}
\int_{0}^{1}(a+b x) d x & =a+b / 2=0 \\
\int_{0}^{1}(a+b x)^{2} d x & =\int_{0}^{1}\left(a^{2}+2 a b x+b^{2} x^{2}\right) d x=a^{2}+a b+b^{2} / 3=1
\end{aligned}
$$

From the first equation we have $b=-2 a$ and substituting it into the second equation we obtain $a^{2}-2 a^{2}+4 a^{2} / 3=1$ which yields $a= \pm \sqrt{3}$ and $b=-2 \sqrt{3}$ if $a=\sqrt{3}$ and $b=2 \sqrt{3}$ if $a=-\sqrt{3}$ (two solutions). Finally, we have $p_{1}(x)= \pm \sqrt{3}(1-2 x)$.
2. (5 points). Check that functions $p_{0}(x)=1$ and $p_{1}(x)=x-\pi / 4$ are orthogonal on $C[0, \pi / 2]$. Find the best linear approximation of $f(x)=\sin x$ by p_{0} and p_{1} on $[0, \pi / 2]$. Compute the squared norm of approximation.

Solution. To prove the orthogonality we need to show that $\int_{0}^{\pi / 2}(x-\pi / 4) d x=0$. We have

$$
\int_{0}^{\pi / 2}(x-\pi / 4) d x=\frac{1}{2}\left(\frac{\pi}{2}\right)^{2}-\frac{\pi}{2} \frac{\pi}{4}=0 .
$$

The best linear approximation for $f(x)$ is found in the form $\lambda_{0} p_{0}(x)+\lambda_{1} p_{1}(x)$ where

$$
\lambda_{0}=\frac{\left(f, p_{0}\right)}{\left\|p_{0}\right\|^{2}}, \lambda_{1}=\frac{\left(f, p_{1}\right)}{\left\|p_{1}\right\|^{2}}
$$

We have

$$
\begin{aligned}
\left(f, p_{0}\right) & =\int_{0}^{\pi / 2} \sin x d x=-\left.\cos x\right|_{0} ^{\pi / 2}=1, \quad\left\|p_{0}\right\|^{2}=\int_{0}^{\pi / 2} d x=\pi / 2 \\
\left(f, p_{1}\right) & =\int_{0}^{\pi / 2}(x-\pi / 4) \sin x d x=\int_{0}^{\pi / 2} x \sin x d x-\pi / 4 \int_{0}^{\pi / 2} \sin x d x=1-\pi / 4 \\
\left\|p_{1}\right\|^{2} & =\int_{0}^{\pi / 2}(x-\pi / 4)^{2} d x=\pi^{3} / 96
\end{aligned}
$$

Thus,

$$
\lambda_{0}=\frac{2}{\pi}, \lambda_{1}=\frac{1-\pi / 4}{\pi^{3} / 96}
$$

and the best linear approximation for $\sin x$ on $[0, \pi / 2]$ is

$$
\widehat{f}=\lambda_{0} p_{0}(x)+\lambda_{1} p_{1}(x)=\frac{2}{\pi}+96 \frac{1-\pi / 4}{\pi^{3}}\left(x-\frac{\pi}{4}\right)=0.1477+0.66444 x
$$

see the graph below. The squared norm of approximation is computed as

$$
\begin{aligned}
\int_{0}^{\pi / 2}(\sin x-0.1477-0.66444 x)^{2} d x & =\int_{0}^{\pi / 2} \sin ^{2} x d x-\int_{0}^{\pi / 2}(0.1477+0.66444 x)^{2} d x \\
& =7.8919 \times 10^{-3}
\end{aligned}
$$

3. (5 points). Find the first-order approximation of $\sin x$ at $x_{0}=0$ using Taylor series expansion and compute the squared norm of approximation using the scalar product $(f, g)=\int_{0}^{\pi / 2} f(x) g(x) d x$.

Solution. Taylor series expansion of the first-order of $\sin x$ at $x_{0}=0$ gives $\sin x \simeq x$. The squared norm of approximation is
$\int_{0}^{\pi / 2}(x-\sin x)^{2} d x=\int_{0}^{\pi / 2} \sin ^{2} x d x-2 \int_{0}^{\pi / 2} x \sin x d x+\int_{0}^{\pi / 2} x^{2} d x=\frac{1}{4} \pi-2+\frac{1}{24} \pi^{3}=7.7326 \times 10^{-2}$
We notice that the error is larger than in the previous problem. It must be larger because the approximation in the previous problem provides the minimum of the error.

Approximation of $\sin x$ on $[0, \pi / 2]$ by two linear functions. The first is the best linear approximation (solid) and the second is the first-order Taylor series expansion (dashed). The latter has a larger approximation error.
4. (7 points). Determine the Fourier series expansion of the function $f(x)=\pi^{2}-x^{2}$ for $-\pi \leq x \leq \pi$. Compute the squared norm of approximation based on the first two terms of the Fourier series.

Solution. Since $f(x)$ is an even function $b_{n}=0$. The constant term is

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\pi^{2}-x^{2}\right) d x=\frac{4}{3} \pi^{2} .
$$

The a_{n} term is

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\pi^{2}-x^{2}\right) \cos n x d x=\pi \int_{-\pi}^{\pi} \cos n x d x-\frac{1}{\pi} \int_{-\pi}^{\pi} x^{2} \cos n x d x \\
& =\left.\pi\left(\frac{1}{n} \sin n x\right)\right|_{-\pi} ^{\pi}-\left.\frac{1}{\pi}\left(\frac{2 x \cos n x}{n^{2}}+\frac{\left(n^{2} x^{2}-2\right) \sin n x}{n^{3}}\right)\right|_{-\pi} ^{\pi} \\
& =(-1)^{n+1} \frac{4}{n^{2}}
\end{aligned}
$$

Finally, the Fourier series is

$$
\pi^{2}-x^{2}=\frac{2}{3} \pi^{2}+4\left(\cos x-\frac{1}{2^{2}} \cos 2 x+\frac{1}{3^{2}} \cos 3 x-\frac{1}{4^{2}} \cos 4 x+\ldots\right)
$$

The first two terms give the approximation

$$
\pi^{2}-x^{2} \simeq \frac{2}{3} \pi^{2}+4 \cos x
$$

plotted below.

Bold - function $\pi^{2}-x^{2}$ on $[-\pi, \pi]$, solid - approximation based on the first two terms of Fourier series.

The squared norm of approximation is computed by the formula

$$
\begin{aligned}
& \int_{-\pi}^{\pi}\left(\pi^{2}-x^{2}-\frac{2}{3} \pi^{2}-4 \cos x\right)^{2} d x \\
= & \int_{-\pi}^{\pi}\left(\pi^{2}-x^{2}\right)^{2} d x-\pi\left(\frac{1}{2} a_{0}^{2}+a_{1}^{2}\right)=\frac{16}{15} \pi^{5}-\pi\left(\frac{16}{18} \pi^{4}+4^{2}\right)=4.138
\end{aligned}
$$

