Mathematics 33

Homework Assignment \#1

Due Wednesday, April 5

1. (5 points). Show that the (short) distance from a point to a straight line is the length of the perpendicular. Use vector notation.

Solution. Let $\mathbf{x} \in R^{2}$ and the straight line be defined as $\mathbf{a}+\lambda \mathbf{b}$, where $\mathbf{a} \in R^{2}$ is the translation vector and $\mathbf{b} \in R^{2}$ is the direction vector. We need to find λ_{*} such that $\left\|\mathbf{x}-\left(\mathbf{a}+\lambda_{*} \mathbf{b}\right)\right\|^{2}=\min$. The squared norm can be rewritten as

$$
\begin{aligned}
\|\mathbf{x}-(\mathbf{a}+\lambda \mathbf{b})\|^{2} & =\|(\mathbf{x}-\mathbf{a})-\lambda \mathbf{b})\left\|^{2}=\right\| \mathbf{x}-\mathbf{a}\left\|^{2}-2 \lambda(\mathbf{x}-\mathbf{a}, \mathbf{b})+\right\| \lambda \mathbf{b} \|^{2} \\
& =\|\mathbf{x}-\mathbf{a}\|^{2}-2 \lambda(\mathbf{x}-\mathbf{a}, \mathbf{b})+\lambda^{2}\|\mathbf{b}\|^{2}
\end{aligned}
$$

where ($\mathbf{x}-\mathbf{a}, \mathbf{b}$) is the scalar (dot) product. The squared norm is a quadratic function of λ. It takes minimum if and only if its gradient vanishes, $-2(\mathbf{x}-\mathbf{a}, \mathbf{b})+2 \lambda\|\mathbf{b}\|^{2}=0$. Let λ_{*} be the solution to this equation, then

$$
0=(\mathbf{x}-\mathbf{a}, \mathbf{b})-\lambda_{*}(\mathbf{b}, \mathbf{b})=\left(\mathbf{x}-\mathbf{a}-\lambda_{*} \mathbf{b}, \mathbf{b}\right)=\left(\mathbf{x}-\left(\mathbf{a}+\lambda_{*} \mathbf{b}\right), \mathbf{b}\right) .
$$

This means that the vector from \mathbf{x} to the line, $\mathbf{x}-\left(\mathbf{a}+\lambda_{*} \mathbf{b}\right)$ is orthogonal to the direction vector b. Therefore, the shortest distance is the length of the perpendicular.
2. (3 points). Let physical system be defined by n points $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}$ with masses $m_{1}, m_{2}, \ldots, m_{n}$ as vectors on the plane. Where is the center of the system (centroid)?

Solution. The center, \mathbf{x} is where the moment mass is zero, i.e.

$$
m_{1}\left(\mathbf{x}-\mathbf{a}_{1}\right)+m_{2}\left(\mathbf{x}-\mathbf{a}_{2}\right)+\ldots .+m_{n}\left(\mathbf{x}-\mathbf{a}_{n}\right)=\mathbf{0}
$$

This implies

$$
\mathbf{x}=\frac{\sum_{i=1}^{n} m_{i} \mathbf{a}_{i}}{\sum_{i=1}^{n} m_{i}}
$$

3. (4 points). Derive the equation for the straight line $y=a+b x$ in polar coordinates.

Solution. In polar coordinates $x=r \cos \theta, y=r \sin \theta$. Substituting this into equation for the straight line we obtain

$$
r=\frac{a}{\sin \theta-b \cos \theta}
$$

4. (6 points). After the Big Bang the universe diverges following Archimedian spiral $r=\theta$. What distance it covers after 3 light years?

Solution. In polar coordinates the Archimedian spiral takes the form $r=\theta$ where $0 \leq \theta<\infty$. In Cartesian system of coordinates the Archimedian spiral takes the form $x(\theta)=\theta \cos \theta, y(\theta)=\theta \sin \theta$. The length along the curve from 0 to 3 is calculated as

$$
\int_{0}^{3} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}} d \theta
$$

But

$$
\frac{d x}{d \theta}=\cos \theta-\theta \sin \theta, \frac{d y}{d \theta}=\sin \theta+\theta \cos \theta
$$

so that we have

$$
\begin{aligned}
\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2} & =(\cos \theta-\theta \sin \theta)^{2}+(\sin \theta+\theta \cos \theta)^{2} \\
& =\cos ^{2} \theta-2 \theta \sin \theta \cos \theta+\theta^{2} \sin ^{2} \theta+\sin ^{2} \theta+2 \theta \sin \theta \cos \theta+\theta^{2} \cos ^{2} \theta \\
& =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+\theta^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+\theta^{2}
\end{aligned}
$$

Thus, the distance is

$$
\int_{0}^{3} \sqrt{1+\theta^{2}} d \theta=\frac{3}{2} \sqrt{10}+\frac{1}{2} \operatorname{arcsinh} 3=5.6526
$$

Thus, over 3 light years after explosion the universe covers the distance of 5.65 light years.
5. (7 points). A body is thrown from certain height with certain initial speed. Is it true that the minimum velocity attains at the maximum height? Is it true for any other trajectory, e.g. $10-5 t(t+1)(t-5) ?$

Solution. The trajectory of a free fall body is specified by a quadratic equation $S(t)=a+b t-c t^{2}$ where $c=g / 2$ and g is the gravity acceleration. The squared velocity is $1+(d S / d t)^{2}$ which takes minimum when $d S / d t=0$. But this corresponds to the maximum height. Therefore, for a free fall trajectory minimum velocity attains at maximum height. It is not true for any trajectory because a force may be involved: Imagine a plane which accelerates the speed but flies horizontally.

