

Math 31

Midterm Examination

Rules

- This is a **closed book exam**. No document is allowed.
- Cell phones and other electronic devices must be turned off.
- Questions and requests for clarification can be addressed to the instructor only.
- You are allowed to use the result of a previous question even if you did not prove it, as long as you indicate it explicitly.

Grading

- In order to receive full credit, solutions must be justified with full sentences.
- The clarity of your explanations will enter into the appreciation of your work.

Last piece of advice

Read the entire exam before you start to write anything.

Problem	1	2	3	4	5	6	7	Total
Points	6	7	8	7	6	8	8	50
Score								

1. (6 points) Let * be the operation on \mathbb{R} given by

$$x * y = (x - y)^4$$

Explain whether or not

- i) the operation is commutative,
- ii) there is an identity element e with respect to *,
- iii) if for every element there is an inverse with respect to *.

$$T$$
) * is Commutative:

$$x * y = (x-y)^4 = (x-y)^2(x-y)^2$$

$$y * x = (y-x)^4 = (y-x)^2(y-x)^2$$

2. (7 points) Let $G = \{e, a, b, c\}$ be a set of four elements, where e denotes the neutral element. Using an operation table, find all possible groups with these four elements, where

$$b \cdot c = a$$
.

Justify your answer.

*	e	G	6	C
e	e	9	5	C
9	9	3	¥ ~~	4
5	6			a
C	C	g - Laghaga, tan it ayan makan di ang di		P

We know that our operation table is like on the Ceft

Pule: In every row and column cach element occurs exactly once.

1.) a* C= 5 => C*C= e

16)	a:	* a		<u> </u>		9 x 6 = e
	×	e	۵	L	c	Inde 5*G=e
8	e	e	ς	6	C	
'	a	9	\mathcal{C}	e	5	~> Itale
	5	5	e	Ċ	G	
	C		6	a	e	24

(2.) axcze The Cxc=6

*				C	The	6*5=e
e	e	9	6	0		
G	9	6	C	2	~~>	Hable
6	b	C	e	9		
C	C	e	9	6		C4
					1	

a)
$$a \times a = b$$
 $\Rightarrow a \times b = c$ $\Rightarrow a \times b = b$ $\Rightarrow b \times b = c$ $\Rightarrow b \times b = c$

- **3.** (8 points) Let (G, \cdot) be a group.
- a. Is $f: G \to G, x \mapsto f(x) = x^2$ a bijective function for any group G? Justify your

b. Show that for fixed $a \in G$ the function $h: G \to G, x \mapsto h(x) = a^3xa^{-3}$ is a bijective function.

a) h is injectave:
$$h(x) = h(y)$$

Cancellation

 $(3(xa^3) = a^3(ya^3)$

Cancellation

 $(xa^3) = ya^3 = ya^3 = ya^3$

b) his singective: Take yeq. Then
$$h(x) = y \iff a^3 \times a^3 = y$$

c. Is the function $h: G \xrightarrow{\cdot} \acute{G}$ from part **b.** a group isomorphism? Justify your answer.

his a
$$h(x-y) = a^3 \times y = a^3$$

honomor- $h(x) \cdot h(y) = (a^3 \times a^3)(a^3 \times a^3) = a^3 \times y = a^3$
whish $h(x) \cdot h(y) = h(x) \cdot h(y)$ $h(x) \cdot h(y) = h(x) \cdot h(y)$ $h(x) \cdot h(y) = h(x) \cdot h(y)$
as h is bijective and a homomorphism we know that h is an isomorphism.

- **4.** (7 points) For each of the following statements, either **prove** that it is true **or** explain why it is **false**.
- **a.** Let (G, \cdot) be an arbitrary group. Then

 $H = \{x \in G, \text{ such that } x = y^2 \text{ for some } y \in G\}$ is a subgroup of G.

Then in general: $x = y^2 + (y^2)^2$ Hence the third contern for a subgroup does not have to be saturfied

b. Let (G,\cdot) be an arbitrary group. Suppose that K and M are subgroups of G. Then

 $K \cdot M = \{x \cdot y, x \in K \text{ and } y \in M\}$ is a subgroup of G.

TEG(Se) Again if X: Y, ab & K.M Then (XY)(ab) Does not have to be in K.M if g is not abelian

c. If every element of a group (G, \cdot) is its own inverse, then G is abelian.

True I If $a=\overline{a}'$ and $b=\overline{b}'$ Then $ab=\overline{a}'5'=(\overline{b}a)'=\overline{b}a$ This is true for all als \overline{e} \overline{G} Hence \overline{G} p abelian 5. (6 points) Let $M_2(\mathbb{R})$ be the set of 2×2 matrices with real coefficients. Show that

$$A \sim B \Leftrightarrow B = P \cdot A \cdot P^{-1}$$
 for some $P \in GL_2(\mathbb{R})$

a. Show that \sim is an equivalence relation in $M_2(\mathbb{R})$.

$$= C = (QP)A(QP) = (QP)A(QP)$$

$$= CAA$$

b. Write down the equivalence class of

$$[Id] = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{bmatrix}$$
 of the matrix Id .

- 6. (8 points) Consider the group $(\mathbb{Z} \times \mathbb{Z}_2, + \times +_2)$.
- **a.** Describe or list all elements of $\mathbb{Z} \times \mathbb{Z}_2$.

Stall elements of
$$\mathbb{Z} \times \mathbb{Z}_2$$
.

 $\mathbb{Z} \times \mathbb{Z}_2 = \{(K_1), K \in \mathbb{Z}_3^2 \cup \{(K_1, 0), K \in \mathbb{Z}_3^2 \}$

b. Draw the Cayley graph

$$\Gamma_1 = \Gamma(\mathbb{Z} \times \mathbb{Z}_2, \{(2,0), (3,0), (0,1)\})$$

of $\mathbb{Z} \times \mathbb{Z}_2$ with respect to the generating set $\{(2,0),(3,0),(0,1)\}$.

7. (8 points) Let (G, \cdot) be a group with neutral element e and let S be a generating set i.e. $\langle S \rangle = G$. We recall that

$$G = \langle S \rangle = \{ s_1 \cdot s_2 \cdot \ldots \cdot s_n, \text{ where } s_i \in S \cup S^{-1} \text{ and } n \in \mathbb{N} \}.$$

Let $\Gamma = \Gamma(G, S)$ be the corresponding Cayley graph of G with respect to S.

a. Suppose that $S = \{s_1, s_2\}$. Draw all possible vertices (and edges) that are at most two edges away from e.

b. We now look at the general case. Suppose that S has m elements. Show that every vertex $g \in G$ is connected to the vertex $e \in G$ by a path of edges.

