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Math 31

Midterm Examination

Rules

o This is a closed book exam. No document is allowed.
¢ Cell phones and other electronic devices must be turned off.
¢ Questions and requests for clarification can be addressed to the instructor only.

¢ You are allowed to use the result of a previous question even if you did not
prove it, as long as you indicate it explicitly.

Grading

o In order to receive fuli credit, solutions must be justified with full sentences.

¢ The clarity of your explanations will enter into the appreciation of your work.

Last piece of advice

Read the entire exam before you start to write anything.

Problem | 1 2 3 4 5 6 7 | Total
Points 6 7 8 7 6 8 8 50
Score

Math 31 - Fall 2018



1. (6 points) Let x be the operation on R given by
zxy=(z—y)
Explain whether or not
i) the operation is commutative,

ii) there is an identity element e with respect to ,

iii) if for every element there is an inverse with respect to *.
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2. (7 points) Let G = {e, a, b, c} be a set of four elements, where e denotes the neutral
element. Using an operation table, find all possible groups with these four elements,
where

b-c=a.

Justify your answer.
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3. (8 points) Let (G, -) be a group.

a.Is f: G — G,z — f(x) = z? a bijective function for any group G? Justify your
answer.
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b. Show that for fixed a € G the function b : G — G,z > h(z) = a®za™* is a bijective
function.
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c. Ts the function  : G — G from part b. a group isomorphism? Justify your answer.
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4. (7 points) For each of the following statements, either prove that it is true
or explain why it is false.

a. Let (G, -) be an arbitrary group. Then

H = {z € G, such thatz = y* forsomey € G}  is a subgroup of G.
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b. Let (G, -) be an arbitrary group. Suppose that K and M are subgroups of G. Then
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c. If every element of a group (G, -) is its own inverse, then G is abelian.
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5. (6 points) Let My(R) be the set of 2 x 2 matrices with real coefficients. Show that

A~B& B=P-A-P!forsome P € GL,(R)

a. Show that ~ is an equivalence relation in M,(R) .
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b. Write down the equivalence class of

[Id] = [( (1) (1) )] of the matrix Id.



6. (8 points) Consider the group (Z x Zs, + X +3).

a. Describe or list all elements of Z x Z.
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b. Draw the Cayley graph
Fl . F(Z X ZZ) {(2a 0), (370)s (07 1)})

of Z x 7, with respect to the generating set {(2,0), (3,0), (0, 1)}.




7. (8 points) Let (G, -) be a group with neutral element e and let S be a generating set
i.e. (S) = G. We recall that

G=(S)={s1-53-... 5, wheres; € SUS™ and n € IN}.

Let I = I'(G, S) be the corresponding Cayley graph of G with respect to S.

a. Suppose that S = {s1, s2}. Draw all pos§1ble vertices (and edges) that are at most
two edges away from e. S S ESL
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b. We now look at the general case. Suppose that S has m elements. Show that
every vertex g € G is connected to the vertex e € G by a path of edges.
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