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Automorphism groups of graphs

Examples Find the automorphism groups of the following graphs.

We now prove that G is (isomorphic to) a subgroup of the automorphism group Aut(I'(G, S))
of its Cayley graph I'(G, S). The proof is very similar to the proof of Cayley’s theorem.

Theorem 10 Let (G,-) be a group and S C G, #S = n,n € N be a finite generating set,
ie. (S) =G and ' =T(G,S) be the corresponding Cayley graph. Then G is isomorphic to a
subgroup G* of Aut(I'(G, S5)):

G ~G* where G* < Aut(I'(G,9)).

proof We have to find an injective group homomorphism F : (G, ) — (Aut(I'), o). This implies
that G ~ F(G) = G*. We start with the construction of a map F : G — Aut(I') and then prove
that F'is a group homomorphism.

Step 1 For each a € G we construct a map p, = F(a) € Aut(T):
We recall that for a Cayley graph I we have that V(I') = G and E(I') = G x S. For a € G set
Pa = (Pa,v, Pa,z) Where

a) pav:G—=Ga—pv(r)=a-x.

b) pap:GxS—=GxSaw pyr(z,s)=(a-zs).

To show that p, is indeed an automorphism it is sufficient to show that that p, is a morphism
and that p, 1 and p, g are both bijective (see Theorem 8). We start with the latter condition:

e Lor fixed a € G, the map p,v(z) = a -z is the multiplication from the left, which is
bijective.

e For fixed a € G, the map pg r = pa,v X id is bijective as both p, - and id are bijective (by
Lemma 6).
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e p, satisfies the second condition for a morphism: for all (z,s) € G x S we have
5(pa,E(x7 5)) = Pa,V X pay((S(CU, S))
proof By the definition of p, g and the definition of the Cayley graph we have

6(pa,e(z,5)) Detras 0(az,s) 3g:9)=(9.99) (

Pa,v X pa,V(é(:Ev 5))

az,axrs) and
MINZIT) v X P (,55) = (P (@), pay (w5)) = (az, azs).
In total we have that p, € Aut(I") and the map F' defined by F(a) = p, maps G into Aut(T).
Step 2 The map F : (G,-) — (Aut(I'),0) is a group homomorphism
To show that F' is a homomorphism we have to show that for all a,b € G we have
pab = F(a-b) = F(a) o F(b) = pa o ps.
We know that p, = (pa,v, Pa,E), S0 we have to show that
PabV = Pa,v © pov and  pghE = Pa,E © Pb,E
proof For all x € G we have
pabv (x) = abx and pqy o pyv(x) = pa,v(br) = abx

Hence pgp v () = pa,v 0 ppv(z) for all x € G and therefore pap v = pa,v 0 ppv-
To prove the statement for py, g it is sufficient to see that pe,r = pap,v X id and the proof
folllows from the first part. In total this implies that F is a group homomorphism.

Step 3 The map F : (G,-) — (Aut(T"), o) is injective
proof To show that F' is injective we have to show that for all a,b € G we have
pa=F(a)=F(b)=py,=a=h.

But if p, = pp then pg v = ppy. Especially for x = e, where e is the neutral element of G we
have

a=ae=pgyv(e) = ppv(e) =be=bo.

Hence a = b. This implies that F' is injective.
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In total F is an injective group homomorphism and therefore F' : G — F(G) is a bijective
group homomorphism. This means that

G~ F(G) = G* < Awt(I(G, S))

and we have shown that G is (isomorphic to) a subgroup G* of the automorphism group
Aut(I'(G, S)) of its Cayley graph. O

Examples: For the following Cayleygraphs we have:

i) ForT'y = I'(Zg, {1}) we have that Aut(I';) = Zg. Can you describe the effect of p, : I'y — I'y
on the graph for an a € (Zg, +¢)?

ii) For I'y = I'(Za X Z2,{(1,0),(0,1)}) we have that Zs x Zo < Aut(I';) and Aut(I'1) ~ Dsg.
Can you describe the effect of p, : T'9 — I'y on the graph for an a € (Za X Zg, +2 X +2)7?

Note 11 1.) For all a € G\{e} we have that p, : I' = I' does not fix any vertex, i.e.
payv(xz)#x foral zed.

as if pg v (z) = x then p, v () = ax = x. But az = z implies that a = e. Therefore only p. = id
fixes vertices.

2.) For all @ € G we have that p,(e) = ae = a. This means that for any vertex a € G
there is a symmetry or automorphism that sends e to a.
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This means that a Cayley graph is a homogeneous space: It "looks the same" from any vertex.

Outlook Conversely many homogeneous graphs and spaces can be seen as groups. Examples
are the circle, the line or the plane.




