Math 31: Abstract Algebra
 Fall 2018

Automorphism groups of graphs

Examples Find the automorphism groups of the following graphs.

We now prove that G is (isomorphic to) a subgroup of the automorphism group $\operatorname{Aut}(\Gamma(G, S))$ of its Cayley graph $\Gamma(G, S)$. The proof is very similar to the proof of Cayley's theorem.

Theorem 10 Let (G, \cdot) be a group and $S \subset G, \# S=n, n \in \mathbb{N}$ be a finite generating set, i.e. $\langle S\rangle=G$ and $\Gamma=\Gamma(G, S)$ be the corresponding Cayley graph. Then G is isomorphic to a subgroup G^{*} of $\operatorname{Aut}(\Gamma(G, S))$:

$$
G \simeq G^{*} \quad \text { where } \quad G^{*}<\operatorname{Aut}(\Gamma(G, S))
$$

proof We have to find an injective group homomorphism $F:(G, \cdot) \rightarrow(\operatorname{Aut}(\Gamma), \circ)$. This implies that $G \simeq F(G)=G^{*}$. We start with the construction of a map $F: G \rightarrow \operatorname{Aut}(\Gamma)$ and then prove that F is a group homomorphism.

Step 1 For each $a \in G$ we construct a map $\rho_{a}=F(a) \in \operatorname{Aut}(\Gamma)$:
We recall that for a Cayley graph Γ we have that $V(\Gamma)=G$ and $E(\Gamma)=G \times S$. For $a \in G$ set $\rho_{a}=\left(\rho_{a, V}, \rho_{a, E}\right)$ where
a) $\rho_{a, V}: G \rightarrow G, a \mapsto \rho_{a, V}(x)=a \cdot x$.
b) $\rho_{a, E}: G \times S \rightarrow G \times S, a \mapsto \rho_{a, E}(x, s)=(a \cdot x, s)$.

To show that ρ_{a} is indeed an automorphism it is sufficient to show that that ρ_{a} is a morphism and that $\rho_{a, V}$ and $\rho_{a, E}$ are both bijective (see Theorem 8). We start with the latter condition:

- For fixed $a \in G$, the map $\rho_{a, V}(x)=a \cdot x$ is the multiplication from the left, which is bijective.
- For fixed $a \in G$, the map $\rho_{a, E}=\rho_{a, V} \times i d$ is bijective as both $\rho_{a, V}$ and $i d$ are bijective (by Lemma 6).

Math 31: Abstract Algebra
 Fall 2018

- ρ_{a} satisfies the second condition for a morphism: for all $(x, s) \in G \times S$ we have

$$
\delta\left(\rho_{a, E}(x, s)\right)=\rho_{a, V} \times \rho_{a, V}(\delta(x, s))
$$

proof By the definition of $\rho_{a, E}$ and the definition of the Cayley graph we have

$$
\begin{array}{cl}
\delta\left(\rho_{a, E}(x, s)\right) & \stackrel{\text { Def. } \rho_{a, E}}{=} \delta(a x, s) \stackrel{\delta(g, s)=(g, g s)}{=}(a x, a x s) \text { and } \\
\rho_{a, V} \times \rho_{a, V}(\delta(x, s)) & \stackrel{\delta(g, s)=(g, g s)}{=} \rho_{a, V} \times \rho_{a, V}(x, x s)=\left(\rho_{a, V}(x), \rho_{a, V}(x s)\right)=(a x, a x s) .
\end{array}
$$

In total we have that $\rho_{a} \in \operatorname{Aut}(\Gamma)$ and the map F defined by $F(a)=\rho_{a}$ maps G into $\operatorname{Aut}(\Gamma)$.

Step 2 The map $F:(G, \cdot) \rightarrow(\operatorname{Aut}(\Gamma), \circ)$ is a group homomorphism
To show that F is a homomorphism we have to show that for all $a, b \in G$ we have

$$
\rho_{a b}=F(a \cdot b)=F(a) \circ F(b)=\rho_{a} \circ \rho_{b}
$$

We know that $\rho_{a}=\left(\rho_{a, V}, \rho_{a, E}\right)$, so we have to show that

$$
\rho_{a b, V}=\rho_{a, V} \circ \rho_{b, V} \quad \text { and } \quad \rho_{a b, E}=\rho_{a, E} \circ \rho_{b, E}
$$

proof For all $x \in G$ we have

$$
\rho_{a b, V}(x)=a b x \quad \text { and } \quad \rho_{a, V} \circ \rho_{b, V}(x)=\rho_{a, V}(b x)=a b x
$$

Hence $\rho_{a b, V}(x)=\rho_{a, V} \circ \rho_{b, V}(x)$ for all $x \in G$ and therefore $\rho_{a b, V}=\rho_{a, V} \circ \rho_{b, V}$.
To prove the statement for $\rho_{a b, E}$ it is sufficient to see that $\rho_{a b, E}=\rho_{a b, V} \times i d$ and the proof folllows from the first part. In total this implies that F is a group homomorphism.

Step 3 The map $F:(G, \cdot) \rightarrow(\operatorname{Aut}(\Gamma), \circ)$ is injective
proof To show that F is injective we have to show that for all $a, b \in G$ we have

$$
\rho_{a}=F(a)=F(b)=\rho_{b} \Rightarrow a=b
$$

But if $\rho_{a}=\rho_{b}$ then $\rho_{a, V}=\rho_{b, V}$. Especially for $x=e$, where e is the neutral element of G we have

$$
a=a e=\rho_{a, V}(e)=\rho_{b, V}(e)=b e=b
$$

Hence $a=b$. This implies that F is injective.

Math 31: Abstract Algebra
 Fall 2018

In total F is an injective group homomorphism and therefore $F: G \rightarrow F(G)$ is a bijective group homomorphism. This means that

$$
G \simeq F(G)=G^{*}<\operatorname{Aut}(\Gamma(G, S))
$$

and we have shown that G is (isomorphic to) a subgroup G^{*} of the automorphism group $\operatorname{Aut}(\Gamma(G, S))$ of its Cayley graph.

Examples: For the following Cayleygraphs we have:
i) For $\Gamma_{1}=\Gamma\left(\mathbb{Z}_{6},\{1\}\right)$ we have that $\operatorname{Aut}\left(\Gamma_{1}\right)=\mathbb{Z}_{6}$. Can you describe the effect of $\rho_{a}: \Gamma_{1} \rightarrow \Gamma_{1}$ on the graph for an $a \in\left(\mathbb{Z}_{6},+_{6}\right)$?
ii) For $\Gamma_{2}=\Gamma\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},\{(1,0),(0,1)\}\right)$ we have that $\mathbb{Z}_{2} \times \mathbb{Z}_{2}<\operatorname{Aut}\left(\Gamma_{1}\right)$ and $\operatorname{Aut}\left(\Gamma_{1}\right) \simeq D_{8}$. Can you describe the effect of $\rho_{a}: \Gamma_{2} \rightarrow \Gamma_{2}$ on the graph for an $a \in\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+{ }_{2} \times+_{2}\right)$?

Note 11 1.) For all $a \in G \backslash\{e\}$ we have that $\rho_{a}: \Gamma \rightarrow \Gamma$ does not fix any vertex, i.e.

$$
\rho_{a, V}(x) \neq x \quad \text { for all } \quad x \in G
$$

as if $\rho_{a, V}(x)=x$ then $\rho_{a, V}(x)=a x=x$. But $a x=x$ implies that $a=e$. Therefore only $\rho_{e}=i d$ fixes vertices.
2.) For all $a \in G$ we have that $\rho_{a}(e)=a e=a$. This means that for any vertex $a \in G$ there is a symmetry or automorphism that sends e to a.

Math 31: Abstract Algebra Fall 2018

This means that a Cayley graph is a homogeneous space: It "looks the same" from any vertex.
Outlook Conversely many homogeneous graphs and spaces can be seen as groups. Examples are the circle, the line or the plane.

