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Graph morphisms

Question: What makes Cayley graphs special among graphs?

Examples: Draw the Cayley graph I'(Zg, {1}) and the Cayley graph I'(Z x Z, {(0,1), (1,0) }):

In a way Cayley graphs are the "pearls" among graphs. They are very regular. We already
know that locally every vertex has the same "neighbourhood":

Lemma 1 Let G = (G,-) be a group with neutral element e € G and S C G a generating
set, i.e. (S) = G, such that #S = n for some n € N. Let I' = I'(G, S) be the corresponding
Cayley graph. Then

val(g) = val(e) =2n for all g€ G=V(T).

proof HW 3

Questions
1.) How can we define maps between graphs?
2.) When are two graphs equal?

To answer these questions properly we first recall the definition of the Cartesian product.

Note 2 (Cartesian product) If A and B are sets then
AxB={(a,b)|a€ Abe B}

is the Cartesian product of A and B.
We have: (a1,b1) = (ag,b2) < a1 = ag and by = by. For two functions f : A — C and
g:B — D we define by f xg: Ax B — C x D the function given by

(a,b) = f x g(a,b) :== (f(a),g(b)) forall ac A, be B.

It follows that:
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Lemma 3 f and g are both bijective < f x g bijective.
proof HW 7

Example Let A = C = (Z3,+3) and B = D = (Z4,+4). Let f and g be the maps defined
by
fla):=a+31 and g(b) :=b+42.

Draw a picture of A x B = Z3 X Z4 in a coordinate system on the left and a picture of C x D =
Zs X Z4 on the right and visualize the map f X g.

To define a proper map f:I' — I between graphs we must assure that the image f (") of a
subgraph IV of T' is a subgraph of I". Such a map is called a graph morphism. This condition
is guaranteed if we use the following definition.

Definition 4 (Graph morphism) Let I' = (V, E,§) and I = (V, E, d) be two graphs. Then
1.) a (graph) morphism f: T — T is a pair of two maps f = (fv, f&)

— fv:V > Vand fg: E — E, such that
— for all e € E we have: if §(e) = (u,w) then 6(fg(e)) = (fv (u), fy (w)) or shortly

0(fe(e)) = fv x fr(d(e)).

This means that if two vertices are connected by an edge e then the images of the
vertices must be connected to fg(e) and the map f preserves starting and endpoints.

2.) fis called a (graph) isomorphism, if there is a graph morphism g : I' — I, such that
fog=1idy and go f=idr.

An isomorphism f : ' — I' is called a (graph) automorphism.
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Note 1.) If it is clear from the context we skip the subscript in fy(v) and fg(e) and just
write f(v) and f(e).
2.) The condition &(fz(e)) = fy X fi(6(e)) can be interpreted as: if an edge e goes to f(e) then
its endpoints must follow or also if a vertex v goes to f(v) then its attached edges must follow.

Examples

Theorem 5 1.) The composition of two graph morphisms is again a graph morphism.
2.) f:T — T isomorphism < fi and fg are both bijective.

proof of Theorem 5 1.) Fori € {1,2,3} let I'; = (Vi, E;, 6;) be a graph and let f = (fy,, fr,) :
'y = T'9 and g = (914, 98,) : 2 — T's be two graph morphisms. Then clearly

gOf = (gVQ OfVugEz OfEl)

is a pair of maps, such that gy, o fy; : V1 — V3 and gg, o fg, : E1 — Es3. It remains to show the
second condition. We have for all e; € E1,es € Eo:

62(fE, (1)) = fvy X frn(d1(e1)) and  d3(gm,(€2)) = gvy X gvy(d2(e2))

Hence for ea = fg,(e1) we obtain first with second equation and then with the first equation
above

53(9E20fE1 (61)) = g X gV, (52(fE1 (61))) =9V, ><gV2OfV1 ><fV1 ((51 (61)) = gVQOfV1 XgVQOfV1 ((51 (61))'

This shows that the second condition for a morphism in Definition 4 is also satisfied.

2.) To show the second part of Theorem 5 we show the equivalence.
"=" We recall from Chapter 5 that

a) fv:V — V bijective < Elf;1 :V — V, such that
folofy =idy and fyof,' =id;
b) fg: E — E bijective < Eifgl : E — E, such that

fplofe=idp and fpo fi' =idg
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As fog =idy and go f = idy we have that f‘;l = gy and fgl = g and fy and fg are bijective.

"<" Conversely if fyy and fgp are bijective then there exist the inverse maps f‘;l V=V
and f}El : E — FE and we can setg:f_lz(f‘;l,fgl). )
It remains to show that f~! satisfies the second condition, i.e. for all € € V we have

0(f5'(@) = fi x £, (8(e). (1)
We know that
E=frle)se = fo'(é) forall é€ EecE (2)
b= fr(v)ev = f;40) forall 5eV,0eV (3)
0(fe(e)) = fv x fv(d(e)). (4)

By the definition of fir x fy we also have that (fy x fi/)~! = f‘jl X f‘;l. To prove (1) we use
(2) and set e = f5*(€) in (1):

S(fa (@) = 8(e) = (F7" x fiV) o (v x f)(3(e)) L (F7 x £703(fu(e)) 2 (7 x £71)5(@)

This proves our statement (1). This concludes the proof of Theorem 5. g




