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Graph morphisms

Question: What makes Cayley graphs special among graphs?

Examples: Draw the Cayley graph Γ(Z6, {1}) and the Cayley graph Γ(Z×Z, {(0, 1), (1, 0)}):

In a way Cayley graphs are the "pearls" among graphs. They are very regular. We already
know that locally every vertex has the same "neighbourhood":

Lemma 1 Let G = (G, ·) be a group with neutral element e ∈ G and S ⊂ G a generating
set, i.e. 〈S〉 = G, such that #S = n for some n ∈ N. Let Γ = Γ(G,S) be the corresponding
Cayley graph. Then

val(g) = val(e) = 2n for all g ∈ G = V (Γ).

proof HW 3

Questions

1.) How can we de�ne maps between graphs?
2.) When are two graphs equal?

To answer these questions properly we �rst recall the de�nition of the Cartesian product.

Note 2 (Cartesian product) If A and B are sets then

A×B = {(a, b) | a ∈ A, b ∈ B}

is the Cartesian product of A and B.
We have: (a1, b1) = (a2, b2) ⇔ a1 = a2 and b1 = b2. For two functions f : A → C and
g : B → D we de�ne by f × g : A×B → C ×D the function given by

(a, b)→ f × g(a, b) := (f(a), g(b)) for all a ∈ A , b ∈ B.

It follows that:
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Lemma 3 f and g are both bijective ⇔ f × g bijective.

proof HW 7

Example Let A = C = (Z3,+3) and B = D = (Z4,+4). Let f and g be the maps de�ned
by

f(a) := a+3 1 and g(b) := b+4 2.

Draw a picture of A×B = Z3×Z4 in a coordinate system on the left and a picture of C ×D =
Z3×Z4 on the right and visualize the map f × g.

To de�ne a proper map f : Γ→ Γ̃ between graphs we must assure that the image f(Γ′) of a
subgraph Γ′ of Γ is a subgraph of Γ̃. Such a map is called a graph morphism. This condition
is guaranteed if we use the following de�nition.

De�nition 4 (Graph morphism) Let Γ = (V,E, δ) and Γ̃ = (Ṽ , Ẽ, δ̃) be two graphs. Then

1.) a (graph) morphism f : Γ→ Γ̃ is a pair of two maps f = (fV , fE)

� fV : V → Ṽ and fE : E → Ẽ, such that

� for all e ∈ E we have: if δ(e) = (u,w) then δ̃(fE(e)) = (fV (u), fV (w)) or shortly

δ̃(fE(e)) = fV × fV (δ(e)).

This means that if two vertices are connected by an edge e then the images of the
vertices must be connected to fE(e) and the map f preserves starting and endpoints.

2.) f is called a (graph) isomorphism, if there is a graph morphism g : Γ→ Γ̃, such that

f ◦ g = idΓ̃ and g ◦ f = idΓ.

An isomorphism f : Γ→ Γ is called a (graph) automorphism.
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Note 1.) If it is clear from the context we skip the subscript in fV (v) and fE(e) and just
write f(v) and f(e).
2.) The condition δ̃(fE(e)) = fV × fV (δ(e)) can be interpreted as: if an edge e goes to f(e) then
its endpoints must follow or also if a vertex v goes to f(v) then its attached edges must follow.

Examples

Theorem 5 1.) The composition of two graph morphisms is again a graph morphism.
2.) f : Γ→ Γ̃ isomorphism ⇔ fV and fE are both bijective.

proof of Theorem 5 1.) For i ∈ {1, 2, 3} let Γi = (Vi, Ei, δi) be a graph and let f = (fV1 , fE1) :
Γ1 → Γ2 and g = (gV2 , gE2) : Γ2 → Γ3 be two graph morphisms. Then clearly

g ◦ f = (gV2 ◦ fV1 , gE2 ◦ fE1)

is a pair of maps, such that gV2 ◦ fV1 : V1 → V3 and gE2 ◦ fE1 : E1 → E3. It remains to show the
second condition. We have for all e1 ∈ E1, e2 ∈ E2:

δ2(fE1(e1)) = fV1 × fV1(δ1(e1)) and δ3(gE2(e2)) = gV2 × gV2(δ2(e2))

Hence for e2 = fE1(e1) we obtain �rst with second equation and then with the �rst equation
above

δ3(gE2◦fE1(e1)) = gV2×gV2(δ2(fE1(e1))) = gV2×gV2◦fV1×fV1(δ1(e1)) = gV2◦fV1×gV2◦fV1(δ1(e1)).

This shows that the second condition for a morphism in De�nition 4 is also satis�ed.

2.) To show the second part of Theorem 5 we show the equivalence.
"⇒" We recall from Chapter 5 that

a) fV : V → Ṽ bijective ⇔ ∃f−1
V : Ṽ → V , such that

f−1
V ◦ fV = idV and fV ◦ f−1

V = idṼ

b) fE : E → Ẽ bijective ⇔ ∃f−1
E : Ẽ → E, such that

f−1
E ◦ fE = idE and fE ◦ f−1

E = idẼ
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As f ◦g = idṼ and g◦f = idV we have that f−1
V = gṼ and f−1

E = gẼ and fV and fE are bijective.

"⇐" Conversely if fV and fE are bijective then there exist the inverse maps f−1
V : Ṽ → V

and f−1
E : Ẽ → E and we can set g = f−1 = (f−1

V , f−1
E ).

It remains to show that f−1 satis�es the second condition, i.e. for all ẽ ∈ Ṽ we have

δ(f−1
E (ẽ)) = f−1

V × f−1
V (δ̃(ẽ)). (1)

We know that

ẽ = fE(e)⇔ e = f−1
E (ẽ) for all ẽ ∈ Ẽ, e ∈ E (2)

ṽ = fV (v)⇔ v = f−1
V (ṽ) for all ṽ ∈ Ṽ , v ∈ V (3)

δ̃(fE(e)) = fV × fV (δ(e)). (4)

By the de�nition of fV × fV we also have that (fV × fV )−1 = f−1
V × f−1

V . To prove (1) we use
(2) and set e = f−1

E (ẽ) in (1):

δ(f−1
E (ẽ)) = δ(e) = (f−1

V × f−1
V ) ◦ (fV × fV )(δ(e))

(4)
= (f−1

V × f−1
V )δ̃(fE(e))

(2)
= (f−1

V × f−1
V )δ̃(ẽ)

This proves our statement (1). This concludes the proof of Theorem 5. �


