Math 31: Abstract Algebra
 Fall 2018

Graph morphisms

Question: What makes Cayley graphs special among graphs?
Examples: Draw the Cayley graph $\Gamma\left(\mathbb{Z}_{6},\{1\}\right)$ and the Cayley graph $\Gamma(\mathbb{Z} \times \mathbb{Z},\{(0,1),(1,0)\})$:

In a way Cayley graphs are the "pearls" among graphs. They are very regular. We already know that locally every vertex has the same "neighbourhood":

Lemma 1 Let $G=(G, \cdot)$ be a group with neutral element $e \in G$ and $S \subset G$ a generating set, i.e. $\langle S\rangle=G$, such that $\# S=n$ for some $n \in \mathbb{N}$. Let $\Gamma=\Gamma(G, S)$ be the corresponding Cayley graph. Then

$$
\operatorname{val}(g)=\operatorname{val}(e)=2 n \text { for all } g \in G=V(\Gamma)
$$

proof HW 3

Questions

1.) How can we define maps between graphs?
2.) When are two graphs equal?

To answer these questions properly we first recall the definition of the Cartesian product.
Note 2 (Cartesian product) If A and B are sets then

$$
A \times B=\{(a, b) \mid a \in A, b \in B\}
$$

is the Cartesian product of A and B.
We have: $\left(a_{1}, b_{1}\right)=\left(a_{2}, b_{2}\right) \Leftrightarrow a_{1}=a_{2}$ and $b_{1}=b_{2}$. For two functions $f: A \rightarrow C$ and $g: B \rightarrow D$ we define by $f \times g: A \times B \rightarrow C \times D$ the function given by

$$
(a, b) \rightarrow f \times g(a, b):=(f(a), g(b)) \quad \text { for all } \quad a \in A, b \in B .
$$

It follows that:

Math 31: Abstract Algebra
 Fall 2018

Lemma $3 f$ and g are both bijective $\Leftrightarrow f \times g$ bijective.

proof HW 7

Example Let $A=C=\left(\mathbb{Z}_{3},+_{3}\right)$ and $B=D=\left(\mathbb{Z}_{4},+_{4}\right)$. Let f and g be the maps defined by

$$
f(a):=a+{ }_{3} 1 \text { and } g(b):=b+{ }_{4} 2 .
$$

Draw a picture of $A \times B=\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ in a coordinate system on the left and a picture of $C \times D=$ $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ on the right and visualize the map $f \times g$.

To define a proper map $f: \Gamma \rightarrow \tilde{\Gamma}$ between graphs we must assure that the image $f\left(\Gamma^{\prime}\right)$ of a subgraph Γ^{\prime} of Γ is a subgraph of $\tilde{\Gamma}$. Such a map is called a graph morphism. This condition is guaranteed if we use the following definition.

Definition 4 (Graph morphism) Let $\Gamma=(V, E, \delta)$ and $\tilde{\Gamma}=(\tilde{V}, \tilde{E}, \tilde{\delta})$ be two graphs. Then
1.) a (graph) morphism $f: \Gamma \rightarrow \tilde{\Gamma}$ is a pair of two maps $f=\left(f_{V}, f_{E}\right)$

- $f_{V}: V \rightarrow \tilde{V}$ and $f_{E}: E \rightarrow \tilde{E}$, such that
- for all $e \in E$ we have: if $\delta(e)=(u, w)$ then $\tilde{\delta}\left(f_{E}(e)\right)=\left(f_{V}(u), f_{V}(w)\right)$ or shortly

$$
\tilde{\delta}\left(f_{E}(e)\right)=f_{V} \times f_{V}(\delta(e))
$$

This means that if two vertices are connected by an edge e then the images of the vertices must be connected to $f_{E}(e)$ and the map f preserves starting and endpoints.
2.) f is called a (graph) isomorphism, if there is a graph morphism $g: \Gamma \rightarrow \tilde{\Gamma}$, such that

$$
f \circ g=i d_{\tilde{\Gamma}} \quad \text { and } \quad g \circ f=i d_{\Gamma} .
$$

An isomorphism $f: \Gamma \rightarrow \Gamma$ is called a (graph) automorphism.

Math 31: Abstract Algebra
 Fall 2018

Note 1.) If it is clear from the context we skip the subscript in $f_{V}(v)$ and $f_{E}(e)$ and just write $f(v)$ and $f(e)$.
2.) The condition $\tilde{\delta}\left(f_{E}(e)\right)=f_{V} \times f_{V}(\delta(e))$ can be interpreted as: if an edge e goes to $f(e)$ then its endpoints must follow or also if a vertex v goes to $f(v)$ then its attached edges must follow.

Examples

Theorem 5 1.) The composition of two graph morphisms is again a graph morphism. 2.) $f: \Gamma \rightarrow \tilde{\Gamma}$ isomorphism $\Leftrightarrow f_{V}$ and f_{E} are both bijective.
proof of Theorem 5 1.) For $i \in\{1,2,3\}$ let $\Gamma_{i}=\left(V_{i}, E_{i}, \delta_{i}\right)$ be a graph and let $f=\left(f_{V_{1}}, f_{E_{1}}\right)$: $\Gamma_{1} \rightarrow \Gamma_{2}$ and $g=\left(g_{V_{2}}, g_{E_{2}}\right): \Gamma_{2} \rightarrow \Gamma_{3}$ be two graph morphisms. Then clearly

$$
g \circ f=\left(g_{V_{2}} \circ f_{V_{1}}, g_{E_{2}} \circ f_{E_{1}}\right)
$$

is a pair of maps, such that $g_{V_{2}} \circ f_{V_{1}}: V_{1} \rightarrow V_{3}$ and $g_{E_{2}} \circ f_{E_{1}}: E_{1} \rightarrow E_{3}$. It remains to show the second condition. We have for all $e_{1} \in E_{1}, e_{2} \in E_{2}$:

$$
\delta_{2}\left(f_{E_{1}}\left(e_{1}\right)\right)=f_{V_{1}} \times f_{V_{1}}\left(\delta_{1}\left(e_{1}\right)\right) \quad \text { and } \quad \delta_{3}\left(g_{E_{2}}\left(e_{2}\right)\right)=g_{V_{2}} \times g_{V_{2}}\left(\delta_{2}\left(e_{2}\right)\right)
$$

Hence for $e_{2}=f_{E_{1}}\left(e_{1}\right)$ we obtain first with second equation and then with the first equation above
$\delta_{3}\left(g_{E_{2}} \circ f_{E_{1}}\left(e_{1}\right)\right)=g_{V_{2}} \times g_{V_{2}}\left(\delta_{2}\left(f_{E_{1}}\left(e_{1}\right)\right)\right)=g_{V_{2}} \times g_{V_{2}} \circ f_{V_{1}} \times f_{V_{1}}\left(\delta_{1}\left(e_{1}\right)\right)=g_{V_{2}} \circ f_{V_{1}} \times g_{V_{2}} \circ f_{V_{1}}\left(\delta_{1}\left(e_{1}\right)\right)$.
This shows that the second condition for a morphism in Definition 4 is also satisfied.
2.) To show the second part of Theorem $\mathbf{5}$ we show the equivalence. $" \Rightarrow$ " We recall from Chapter 5 that
a) $f_{V}: V \rightarrow \tilde{V}$ bijective $\Leftrightarrow \exists f_{V}^{-1}: \tilde{V} \rightarrow V$, such that

$$
f_{V}^{-1} \circ f_{V}=i d_{V} \text { and } f_{V} \circ f_{V}^{-1}=i d_{\tilde{V}}
$$

b) $f_{E}: E \rightarrow \tilde{E}$ bijective $\Leftrightarrow \exists f_{E}^{-1}: \tilde{E} \rightarrow E$, such that

$$
f_{E}^{-1} \circ f_{E}=i d_{E} \text { and } f_{E} \circ f_{E}^{-1}=i d_{\tilde{E}}
$$

Math 31: Abstract Algebra Fall 2018

As $f \circ g=i d_{\tilde{V}}$ and $g \circ f=i d_{V}$ we have that $f_{V}^{-1}=g_{\tilde{V}}$ and $f_{E}^{-1}=g_{\tilde{E}}$ and f_{V} and f_{E} are bijective. $" \Leftarrow$ " Conversely if f_{V} and f_{E} are bijective then there exist the inverse maps $f_{V}^{-1}: \tilde{V} \rightarrow V$ and $f_{E}^{-1}: \tilde{E} \rightarrow E$ and we can set $g=f^{-1}=\left(f_{V}^{-1}, f_{E}^{-1}\right)$.
It remains to show that f^{-1} satisfies the second condition, i.e. for all $\tilde{e} \in \tilde{V}$ we have

$$
\begin{equation*}
\delta\left(f_{E}^{-1}(\tilde{e})\right)=f_{V}^{-1} \times f_{V}^{-1}(\tilde{\delta}(\tilde{e})) . \tag{1}
\end{equation*}
$$

We know that

$$
\begin{align*}
\tilde{e}=f_{E}(e) \Leftrightarrow e & =f_{E}^{-1}(\tilde{e}) \text { for all } \tilde{e} \in \tilde{E}, e \in E \tag{2}\\
\tilde{v}=f_{V}(v) \Leftrightarrow v & =f_{V}^{-1}(\tilde{v}) \text { for all } \tilde{v} \in \tilde{V}, v \in V \tag{3}\\
\tilde{\delta}\left(f_{E}(e)\right) & =f_{V} \times f_{V}(\delta(e)) . \tag{4}
\end{align*}
$$

By the definition of $f_{V} \times f_{V}$ we also have that $\left(f_{V} \times f_{V}\right)^{-1}=f_{V}^{-1} \times f_{V}^{-1}$. To prove (1) we use (2) and set $e=f_{E}^{-1}(\tilde{e})$ in (1):

$$
\delta\left(f_{E}^{-1}(\tilde{e})\right)=\delta(e)=\left(f_{V}^{-1} \times f_{V}^{-1}\right) \circ\left(f_{V} \times f_{V}\right)(\delta(e)) \stackrel{(4)}{=}\left(f_{V}^{-1} \times f_{V}^{-1}\right) \tilde{\delta}\left(f_{E}(e)\right) \stackrel{(2)}{=}\left(f_{V}^{-1} \times f_{V}^{-1}\right) \tilde{\delta}(\tilde{e})
$$

This proves our statement (1). This concludes the proof of Theorem 5.

