Math 31: Abstract Algebra
 Fall 2018

Cayley graphs

Aim: To understand how groups look like, we represent them by a graph, the so called Cayley graph.

Definition 1 (Graph) A graph is an ordered triplet $\Gamma=(V, E, \delta)$, such that

- $V=V(\Gamma)$: set of vertices or nodes of Γ
- $E=E(\Gamma)$: set of edges of Γ
- $\delta: E \rightarrow V \times V=\{(u, v) \mid u, v \in V\}$: the gluing map that assigns to each edge an ordered pair of vertices.

If $\delta(e)=(u, v)=(o(e), t(e))$, then we call

- $u=o(e)$ the origin of the edge $e \in E$
- $v=t(e)$ the terminus of the edge $e \in E$

Note: As the edges have an origin and terminus, they are oriented. We can think of the edges as arrows, where the tip is at the terminus.

Example: Let $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be four vertices (points) and $E=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ four edges (arrows). Draw your own graph Γ with these edges and vertices. Then use the picture to describe the gluing function δ.

Notation

- we often abbreviate (V, E, δ) by (V, E). However, we need δ as there may be multiple edges between two vertices. Otherwise we could use a simpler definition.

Math 31: Abstract Algebra
 Fall 2018

- two vertices u, v are called adjacent if they are connected by an edge. In this case we write shortly $u \sim v$.
- similarly two edges e, f are called adjacent if they have a common vertex. In this case we also write $e \sim f$.
- a loop is an edge that connects a single vertex.
- a simple graph is a graph that has no loops pairs of vertices connected by multiple edges.
- the valency $\operatorname{val}(v)$ of a vertex v is the number of edges connected to a vertex, where a loop is counted twice. Informally this is the number of "half-edges" connected to a vertex.

A subgraph is a part of a graph that is also a graph. To assure that it is indeed a graph, we must make sure that its edges are connected to vertices inside the subgraph:

Definition 2 (Subgraph) If $\Gamma=(V, E, \delta)$ is a graph, then $\Gamma^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of Γ if
1.) $V^{\prime} \subset V$ and $E^{\prime} \subset E$
2.) for all $e^{\prime} \in E$ we have that $\delta\left(e^{\prime}\right) \subset V^{\prime} \times V^{\prime}$

Example

Definition 3 (Cayley graph) If $G=(G, \cdot)$ is a group and $S \subset G$ a generating set, i.e. $\langle S\rangle=G$. Then the (directed) graph $\Gamma=(V, E, \delta)$ defined by

- $V=G$
- $E=G \times S=\{(g, s) \mid g \in G, s \in S\}$
- $\delta: G \times S \rightarrow G \times G, \delta:(g, s) \mapsto \delta(g, s)=(g, g \cdot s)$.

Math 31: Abstract Algebra Fall 2018

is the Cayley graph $\Gamma=\Gamma(G, S)$ of G with respect to S.

Though this is not part of the definition, we will usually restrict ourselves to the case where the generating set is finite, i.e. $\# \mathrm{~S}=\mathrm{n}$ for some $n \in \mathbb{N}$.

Examples Here we assume that e is the neutral element of G.
i) $\Gamma_{1}=\Gamma(\{e\},\{e\})$, where $G=\{e\}$ is the group with one element.
ii) $\Gamma_{2}=\Gamma\left(\mathbb{Z}_{5},\{1\}\right)$
iii) $\Gamma_{3}=\Gamma(\mathbb{Z},\{1\})$
iv) For $\Gamma_{4}=\Gamma(G, S)$, where $S=\left\{s_{1}, s_{2}, s_{3}\right\}$. Draw all edges connected to the vertex e.

Exercise

v) $\Gamma_{5}=\Gamma(\mathbb{Z},\{2,3\})$
vi) $\Gamma_{5}=\Gamma\left(\mathbb{Z}_{5},\{0,1,2\}\right)$

