Math 31: Abstract Algebra Fall 2016 - Homework 7

Return date: Wednesday 11/02/16

keywords: homomorphism theorem, graph automorphisms

Instructions: Write your answers neatly and clearly on straight-edged paper, use complete sentences and label any diagrams. Please show your work; no credit is given for solutions without work or justification.

exercise 1. (4 points) Let $f : A \to C$ and $g : B \to D$ be two functions. Let $f \times g : A \times B \to C \times D$ be function defined by

 $(f \times g)(a,b) := (f(a),g(b))$ for all $(a,b) \in A \times B$.

Show that $f \times g$ bijective $\Leftrightarrow f$ and g bijective.

exercise 2. (6 points) Let (G, \cdot) and (H, \cdot) be groups and N < G be a normal subgroup of G and M < H be a normal subgroup of H.

- a) Show that the function $f: G \times H \to (G/N) \times (H/M), (a, b) \mapsto f(a, b) := (Na, Mb)$ is a surjective homomorphism.
- b) Find the kernel $\ker(f)$ of f.
- c) Use the homomorphism theorem to conclude that $(G \times H)/(N \times M) \simeq (G/N) \times (H/M)$.

exercise 3. (6 points) Let Γ be the following graph with edges $E = \{1, 2, 3, 4, 5, 6\}$.

- a) Show that $\operatorname{Aut}(\Gamma)$ is (isomorphic to) a subgroup of (S_4, \circ) .
- b) Show that $\operatorname{Aut}(\Gamma)$ contains an element r of order 4 and find $\#\operatorname{Aut}(\Gamma)$.
- c) Show that $\operatorname{Aut}(\Gamma)$ is a non-abelian group.
- d) Look up the subgroups of S_4 and decide to which group $\operatorname{Aut}(\Gamma)$ is isomorphic.

exercise 4. (4 points) Let $\Gamma := \Gamma(\mathbb{Z}_5, \{1\})$ be the Cayley graph of \mathbb{Z}_5 generated by $\{1\}$. Show that $\operatorname{Aut}(\Gamma) \simeq (\mathbb{Z}_5, +_5)$. Note: In general $\operatorname{Aut}(\Gamma(\mathbb{Z}_n, \{1\})) \simeq (\mathbb{Z}_n, +_n)$.