$\qquad$

# Math 31 Take-Home Final 

Due December 9, 2009 by 2pm

InSTRUCTIONS: For this exam you may use the assigned course text book, your class notes, and any material on the course Blackboard site. If you are confused about what a question is asking of you, you may consult with your instructor. You may not consult any other source.

This exam is due by $2: 00 \mathrm{pm}$ on Wednesday, December 9. It should be returned to Paige's office, 221 Kemeny Hall.

Staple this page to the front of your completed exam before turning it in.

## Honor Statement:

I have neither given nor received help on this exam, and all of the answers are my own.

| Question | Points | Score |
| :---: | :---: | :---: |
| 1 | 40 |  |
| 2 | 20 |  |
| 3 | 15 |  |
| 4 | 15 |  |
| 5 | 15 |  |
| 6 | 35 |  |
| Total: | 140 |  |

Instructions: For this exam you may use the assigned course text book, your class notes, and any material on the course Blackboard site. If you are confused about what a question is asking of you, I encourage you to come see me. I will be happy to clarify the questions for you. If you have trouble getting started, I will "sell" hints for a small point deduction (only one hint per problem). You may not consult any source other than the ones listed above.

You may cite a result without proof if it appears in either the assigned text, the assigned homework or your class notes and you should specify exactly where it came from (e.g. Problem 3 of HW2, or Thm. 9.3). Even if you cannot solve one part of a problem, you may still use that result in a later part of the problem. Important: Show your work and be sure to explain each answer clearly and completely.

1. In this problem, let $R$ be a commutative ring with unity.
(a) [10 points] Let $A$ and $B$ be proper ideals of $R$. We say that $A$ and $B$ are comaximal if there is no proper ideal of $R$ containing both $A$ and $B$. Show that this definition is equivalent to saying that $A+B=R$.
(b) [10 points] Let $A$ and $B$ be proper ideals of $R$. Show that the map $\phi: R \rightarrow R / A \oplus R / B$ given by $\phi(r)=(r+A, r+B)$ is a ring homomorphism and determine $\operatorname{ker} \phi$.
(c) [15 points] If the ideals $A$ and $B$ (from part (b)) are comaximal, show that $R /(A B) \cong R / A \oplus R / B$.
(d) [5 points] The results of parts (b) and (c) form a theorem called the Chinese Remainder Theorem. Restate this theorem in the special case when $R=\mathbb{Z}$. (You should reinterpret the map given in part (b), tell me what friendlier condition means the same as "comaximal" in the case of $\mathbb{Z}$, and describe the ideal $A B$ when the ideals are comaximal, but you do not need to justify these statements).
2. Let $D$ be an integral domain. We say $d \in D$ is a greatest common divisor of two nonzero elements $r, s \in D$ if $d$ is a common divisor of $r$ and $s$ (that is, $d|r, d| s$ ) and whenever $d^{\prime} \in D$ is another common divisor of $r$ and $s, d^{\prime} \mid d$.
(a) [8 points] If $d$ and $d^{\prime}$ are two greatest common divisors of $r$ and $s$, how are they related? Explain.
(b) [12 points] Find a greatest common divisor of $f(x)=2 x^{4}+4 x^{3}+x+3$ and $g(x)=4 x^{4}+2 x^{2}+4$ in $Z_{5}[x]$. Hint: These polynomials split over $Z_{5}$.
3. [15 points] A ring $R$ with unity is called a division ring if every nonzero element in $R$ is a unit. Show that the ring of quaternions, $\mathbb{H}=\left\{a+b i+c j+d k \mid a, b, c, d \in \mathbb{R} ; i^{2}=\right.$ $\left.j^{2}=k^{2}=-1 ; i j=k=-j i\right\}$ (defined as in homework), is a division ring. You may assume that $\mathbb{H}$ is a ring with unity.
4. (a) [7 points] Show that $p(x)=x^{3}+9 x+6$ is irreducible in $\mathbb{Q}[x]$.
(b) [8 points] Let $\theta$ be a root of $p(x)$ in some extension of $\mathbb{Q}$. Give a basis for $\mathbb{Q}(\theta)$ and express $\theta^{-1}$ in terms of this basis.
5. [15 points] Let $F$ be a field and let $\alpha$ be an element of some algebraic extension $K$ of $F$. Prove that if $[F(\alpha): F]$ is odd, then $F(\alpha)=F\left(\alpha^{2}\right)$. Hint: Consider $\left[F(\alpha): F\left(\alpha^{2}\right)\right]$.
6. Let $G$ be a group (written multiplicatively) and let $H, K \subseteq G$ be subgroups. Define $H K=\{h k \mid h \in H, k \in K\}$.
(a) [10 points] Prove that the following two statements are equivalent:
7. Every element $x \in H K$ can be written $x=h k$ for a unique element $h \in H$ and a unique element $k \in K$.
8. $H \cap K=\{e\}$.
(b) [7 points] Suppose $H$ and $K$ are subgroups of $G$ satisfying the following condition: for every $h \in H$ and $k \in K$, there are elements $h^{\prime} \in H$ and $k^{\prime} \in K$ with $h k=k^{\prime} h$ and $k h=h^{\prime} k$. Show that $H K$ is a subgroup of $G$.
(c) [10 points] Suppose $H$ and $K$ are as in part (b), $G=H K$ and $H \cap K=\{e\}$. Let $\phi: H \oplus K \rightarrow G$ by $\phi(h, k)=h k$. Prove that $\phi$ is an isomorphism.
(d) [8 points] Let $G=D_{3}, H=\left\langle R_{120}\right\rangle$ and $K=\langle F\rangle$. Show that $G=H K$ and $H \cap K=\left\{R_{0}\right\}$. Is $H \oplus K \cong G$ ? Prove your claim.
