Name:	

MATH 31 MIDTERM

October 30, 2009

INSTRUCTIONS: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

HONOR STATEMENT:

I have neither given nor received help on this exam, and all of the answers are my own.

		Signature

Question	Points	Score
1	14	
2	16	
3	18	
4	12	
5	15	
Total:	75	

- 1. Mark each of the following statements TRUE or FALSE. You do not need to justify your answers.
 - (a) [2 points] Abelian groups are cyclic.
 - (b) [2 points] If $K \leq H$ and $H \leq G$, then $K \leq G$.
 - (c) [2 points] If G is a cyclic group and $K \leq G$, then K is a normal subgroup.
 - (d) [2 points] If $\sigma \in \mathcal{S}_n$ is an odd permutation, then so is σ^{-1} .
 - (e) [2 points] If |G| = n, |H| = m, then $|G \oplus H| = n + m$.
 - (f) [2 points] If G is a group and $a \in G$, then $Z(G) \leq C(a)$.
 - (g) [2 points] If $H \subseteq G$, then $ghg^{-1} = h$ for all $h \in H$ and $g \in G$.

- 2. Give a complete definition of each of the following terms.
 - (a) [5 points] Cyclic group. (You do not need to define a group, just what makes a group cyclic.)

(b) [5 points] The center of a group. (Again, you do not need to define a group.)

(c) [6 points] An automorphism. (If you refer to any other kind of map, you'll need to define it.)

- 3. Examples.
 - (a) [4 points] Give an example of an infinite group that is not abelian.

(b) [6 points] Give an example of a non-trivial group homomorphism that is not an isomorphism.

(c) [8 points] Give an example of a group, G and subgroups H and K of G so that K is normal in G, but H is not. (So, $H \leq G$, $H \not \supseteq G$ and $K \subseteq G$.)

4. [12 points] Let $G = Z_{20}$. Clearly list all of the subgroups of G and determine its subgroup lattice. (You may either list a subgroup by specifying all of its elements, or, if the subgroup is cyclic, you may give one of its generators and the order of the subgroup).

- 5. Consider the direct product $G = Z_{12} \oplus Z_{35}$. Note: Your explanations below should reference the main idea of some theorem. You do not need to give a complete proof, or even state the theorem completely, as long as you give me some idea of how you know the answers.
 - (a) [5 points] Is G cyclic? Give a brief explanation.

(b) [5 points] Is $G \cong Z_{60} \oplus Z_7$? Give a brief explanation.

(c) [5 points] Is $G \cong Z_6 \oplus Z_{70}$? Give a brief explanation.