
Math 31: Questions and Answers

1. Question: What is the best approach to formally proving that a function is onto?

Answer: Say we have a map ϕ : G → H. In this class, we normally have that ϕ is
at least a group homomorphism, and that G and H are groups, but for our purposes
here, we need only that G and H are sets (of any sort) and that ϕ is a function.

Then, to show that ϕ is onto, we take an arbitrary element h ∈ H and then we find a
g ∈ G which has the property that ϕ(g) = h.

2. Question: How do you formally show that something is one-to-one?

Answer: To show that a function f from a set S to a set T is one-to-one, we take two
arbitrary elements of S, say s1 and s2 and we verify that if f(s1) = f(s2), then s1 = s2.

If our function happens to be a group homomorphism, we have an equivalent definition:
a group homomorphism φ : G → H is one-to-one if φ(g) = eH implies g = eG. To see
that this is the same, consider the following progression: Let g1, g2 ∈ G s.t.

φ(g1) = φ(g2) then...

φ(g1)φ(g2)
−1 = eH

φ(g1)φ(g−1
2 ) = eH since φ(g)−1 = φ(g−1)

φ(g1 · g−1
2 ) = eH since φ is a homomorphism

φ(g1 · g−1
2 ) = φ(eG) since φ(eG) = eH

So, if φ is one-to-one under our normal definition, then this implies g1g
−1
2 = eG, which

means that g1 = g2.

On the other hand, if φ is a group homomorphism and φ(g) = eH implies g = eG, then
the above calculation shows that if φ(g1) = φ(g2), then φ(g1g

−1
2 ) = eH , implying that

g1g
−1
2 = eG, implying that g1 = g2.

3. Question: I am still confused about proofs by induction.

Answer: The general idea is: if we know that some statement holds for some integer
a and we can show that the same statement is true for an integer n whenever it’s true
for all the integers i between a and n: a ≤ i < n, then we’ve shown that it’s true for
all integers n ≥ a. Usually our a is 0 or 1, and we call the proof that the statement
holds for a the base-step. The proof that the statement holds for n whenever it holds
for the integers less than n is called the inductive step. For examples or help, check
out the text book (or the books of proofs in my office!).

4. Question: Are there specific instances when we need to do a proof for a finite set and
then for an infinite set?

Answer: Usually, we’re able to prove statements about groups in general (as one case),
but if our argument depends at all on any theorem that only works for finite groups
(or, respectively, only works for infinite groups), then we’ll have to treat the cases
separately... so inspect the hypotheses of the theorems carefully!
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5. Question: I don’t understand the proof of the one-step subgroup test. How can you
assign both a = b = x in the proof.

Answer: This is actually a common “trick” used in proofs. Here’s the idea: If a
statement holds for all values of a and b, then it had better hold for a particular
choice, such as a = x and b = x.

In the proof of the one-step subgroup test, we’re assuming that the nonempty subset
H has the property that for any a, b ∈ H, ab−1 ∈ H. So, if x ∈ H, then we are free to
choose both a = x and b = x, which gives us that xx−1 = e ∈ H.

6. Question: What exactly is the group of quaternions? How do you define it?

Answer: The definition of the group of quaternions given in homework (using which
you worked out a Cayley table for this group) is a perfectly good one: Let Q =
{1,−1, i,−i, j,−j, k,−k} and define a multiplication on it so that 1 is the identity, −1
commutes with all elements, i2 = j2 = k2 = −1, ij = k, jk = i. We saw that these
rules imply that ki = j, and that reversing the order of a product ab = −ba when a
and b are not equal or opposites, nor are they either ±1.

The book uses a different notation. On p. 91 it defines the group of quaternions as
the set {e, a, a2, a3, b, ba, ba2, ba3} with a given Cayley table to be the quaternions. If
you define a map φ so that φ(a) = i and φ(b) = j, and so that φ is a homomorphism,
you’ll find that φ is an isomorphism from their description to ours.

Finally, some people noticed that the multiplication of the i’s, j’s and k’s looked an
awful lot like taking the cross products of the standard basis vectors of R3, i = 〈1, 0, 0〉,
j = 〈0, 1, 0〉 and k = 〈0, 0, 1〉. It’s true. The multiplication for these works exactly the
same - but only for ij, ji, ik, ki, jk, and kj (i.e. for each of these, ab = a × b). The
cross product of a vector with itself is 0, so i2 6= i× i.

7. Question: What does it mean for an element of a group to be a generator?

Answer: In multiplicative notation: we say that an element a ∈ G generates G if for
every element g ∈ G, g is a power of a. That is, there is some integer k with ak = g.

In additive notation: we say that an element a ∈ G generates G if for every element
g ∈ G, g is a multiple of a. That is, there is some integer k with k · a = g.

In either case, we write G = 〈a〉.

8. Question: I’m still a little confused about cyclic groups, particularly the Fundamental
Theorem of Cyclic Groups and knowing which groups are cyclic.

Answer: As mentioned above, a group is cyclic if it has a generator. The Fundamental
Theorem of Cyclic Groups states that: (1) Every subgroup of a cyclic group is cyclic.
(2) If |〈a〉| = n, then the order of every subgroup of 〈a〉 divides n. (3) For each positive
divisor d of n, there is exactly one subgroup of order d, and one generator of this
subgroup is an/d (in additive notation, this is n

d
· a).

(1) promises us that if we consider the subgroups 〈g〉 for each g ∈ G, we will find all
of the subgroups of G. In Z, this means that every subgroup has the form 〈n〉 = nZ
(all the multiples of n).
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(2) we now know holds for any group, even if it isn’t cyclic (this is Lagrange’s Theorem).

(3) says that the converse to Lagrange’s Theorem is true for cyclic groups (we know
this isn’t true for general groups), and it tells us how to find that subgroup by giving
us a formula for its generator.

9. Question: I really don’t have a good understanding of what a permutation is. In the
way that I can think of Z12 as the group: {0, 1, . . . , 11} with an operation of addition
(mod12), I’d like to have a better conceptual idea of what a permuation group is.

Answer: I know some of you aren’t going to like this... but a permutation group is a
group of maps. These maps are bijections from the set {1, 2, . . . , n} onto the same set:
{1, 2, . . . , n}.

• There is a natural identity map, which takes each element s ∈ {1, 2, . . . , n} to
itself: ε(s) = s.

• Since these permutation [maps] are bijections, the composition of any two is still
a bijection (going from the same set onto the same set), so the set of permutation
[maps] is closed under the operation of function composition.

• Function composition is associative: α ◦ β ◦ γ = α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.

• Since these permutation [maps] are bijections, each has an inverse, which is again
a permutation [map].

The notations (array and cycle) are merely shorthand for expressing where these maps
send the elements of the set, namely 1,2,. . .n.

Sometimes, it is tempting to think of permutations as all the possible arrangements
of the elements of the set {1, 2, . . . , n}, but this isn’t quite accurate... what would
our identity arrangement be? How would we “multiply” arrangements? Really, these
arrangements are images of the set under the permutation maps.

10. Question: I don’t understand composing permutations.

Answer: Composing permutations is, admittedly, a little confusing. First, let’s remem-
ber that permutations are functions. These functions take in the integers 1 to n and
spit out integers 1 to n (although not necessarily the same one). If we remember back
to calculus, when we had two functions, say f(x) = x+1 and g(x) = x2, then when we
compose them, we perform the one inside the parentheses (the one on the right) first:
f ◦g(x) = f(g(x)) = f(x2) = x2+1. When we do the composition of the same functions
in the opposite order, we have: g ◦ f(x) = g(f(x)) = g(x+ 1) = (x+ 1)2 = x2 + 2x+ 1.
So order matters in function composition. Keeping this cautionary tale in mind, let’s
talk about permutations.

Think of α and β in Sn as functions. In array notation, the top row has the input, and
the bottom row has the output. Using the α and β in S8 from the second homework set

(given below), we think of α =

[
1 2 3 4 5 6 7 8

α(1) α(2) α(3) α(4) α(5) α(6) α(7) α(8)

]
,
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where α(1) = 2, α(2) = 3, α(3) = 4, etc. We think of β in a similar way. Then their
product, αβ is defined by:

αβ(1) = α(β(1)) = α(1) = 2

αβ(2) = α(β(2)) = α(3) = 4

αβ(3) = α(β(3)) = α(8) = 6

αβ(4) = α(β(4)) = α(7) = 8

αβ(5) = α(β(5)) = α(6) = 7

αβ(6) = α(β(6)) = α(5) = 1

αβ(7) = α(β(7)) = α(2) = 3

αβ(8) = α(β(8)) = α(4) = 5

You can verify yourself that this is exactly what we got for the product before, using
the notational shortcuts of array or cycle notations.

α =

[
1 2 3 4 5 6 7 8
2 3 4 5 1 7 8 6

]
and β =

[
1 2 3 4 5 6 7 8
1 3 8 7 6 5 2 4

]
11. Question: What is the usefulness of Theorem 5.5 Always even or always odd?

Answer: Theorem 5.5 says that if we express a permutation as a product transpositions
in two different ways, then either both products have an even number of transpositions
or an both have an odd number. So, we can classify permutations as even or odd,
depending on whether they require an even or odd number of transpositions.

This might be surprising, considering that there are an endless number of ways to write
any permutation as a product of transpositions. It’s useful because it turns out that
the even permutations form a sub-group!

12. Question: I know how to prove that something is an automorphism, but I am still
not completely certain about how to always determine the automorphisms of a group
or better yet, how to describe the elements of an automorphism group.

Answer: Just to refresh everyone’s memory, an automorphism is a bijective group
homomorphism taking a group G onto itself. So, to prove that a map is actually an
automorphism, we need to verify the following: (1) In case it’s not painfully obvious,
we should verify that the map (call it α) takes elements of G to elements of G - so
verify α(g) ∈ G for g ∈ G. (2) Verify that α is a homomorphism - so, for a, b ∈ G,
α(ab) = α(a)α(b). (3) Verify that α is 1-1. And finally, (4) verify that α is onto.
Remember, we have a few new tricks for these last two: if |G| is finite, then we only need
to check one of (3) or (4) (see HW3); second, once we know that α is a homomorphism,
in order to show that α is 1-1, we can just show that {g ∈ G s.t. α(g) = e} = {e}.
Now, for a general group G, we don’t always have an easy way of specifying all of the
automorphisms of G (that is, we don’t always know the elements of Aut(G)). When
G is a finite cyclic group of order n, we know that these correspond to the unit group
U(n).
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Since the elements of an automorphism group, Aut(G), are maps, we need to specify
what these maps do in order to fully describe these elements. That is, we need to
either give a general formula (e.g. φ(x) = 33x (mod 50) as in the homework) or list
out what exactly φ(g) is for each g ∈ G.

For example, consider the group Z2 ⊕ Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. We don’t have
any theorems that tell us what the automorphisms of this group look like, but since
it’s a small group, it’s reasonable to specify automorphisms by listing what they do
to the elements. First of all, let α0 be the identity map, so α(a, b) = (a, b) for any
(a, b) ∈ Z2 ⊕ Z2.

Now, any automorphism β ∈ Aut(Z2 ⊕ Z2) will have β(0, 0) = (0, 0) since it must
preserve the identity. Let β(1, 0) = (0, 1) and β(0, 1) = (1, 0). Then if β is an automor-
phism, we should have β(1, 1) = β((1, 0) + (0, 1)) = β(1, 0)⊕ β(0, 1) = (0, 1)⊕ (1, 0) =
(1, 1). This completely defines an automorphism of Z2 ⊕ Z2 (we haven’t fully verified
here that β is an automorphism, but we can see it is both 1-1 and onto, and we can
check that it is operation preserving by checking a few more “products”).

13. Question: What is so special about the inner automorphism that it gets its own name
and notation?

Answer: First, note that for Abelian groups, all inner automorphisms give the identity
map since φg(x) = gxg−1 = xgg−1 = x. Also, recall that we know all of the auto-
morphisms for cyclic groups. We’ll see that all Abelian groups can be viewed as being
built out of smaller, cyclic groups, and that we can reconstruct automorphisms of these
groups by pasting together automorphisms of the pieces.

For non-Abelian groups, we aren’t so lucky. But, in the non-Abelian case, the inner
automorphisms form a much more interesting group. In the non-Abelian setting, inner
automorphisms are sometimes the only ones we can easily specify.

14. Question: I don’t understand why, in the solution for problem 5 (b) in HW3, we are
looking for something that equals 1 (mod 50) in order to solve the problem.

Answer: We know that every automorphism of a cyclic group can be described just by
specifying the image of one generator: let G be a cyclic group, a a generator of G (i.e.
G = 〈a〉), and α an automorphism of G. Suppose we know that α(a) = b for some
element b ∈ G. If g ∈ G, then g = ak for some k (this is what it means for a to be a
generator of G), and then α(g) = α(ak) = α(a)k = bk (by the homomorphic propertiy
of α).

This same reasoning helps explain why automorphisms of finite cyclic groups (Aut(Zn))
correspond to the elements of the unit groups (U(n)): suppose α is an automorphism
of Zn, and that a is a generator of Zn. Then a must be relatively prime to n, and so
a ∈ U(n). Since 〈a〉 = Zn, 〈α(a)〉 = Zn since n = |a| = |α(a)|, so α(a) must also be
relatively prime to n, i.e. α(a) ∈ U(n).

Now, since an automorphism of a finite cyclic group is specified by where it sends any
generator, we can focus on where it sends the generator 1 (since this is the friendliest
generator - meaning that it is easiest to determine the k above when a = 1). So, now
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there is one automorphism for each choice of the image of 1, and these choices come
from U(n), thus establishing the correspondence. That this correspondence is actually
an isomorphism, itself, is proven in the textbook.

In problem 5 (b), we are given that φ is an automorphism of Z50 and that φ(11) = 13.
Since 11 is relatively prime to 50, 11 is a generator of Z50, so the automorphism φ
is entirely specified by the fact that φ(11) = 13: for any element m ∈ Z50, m =
k ·11 (mod 50), and so φ(m) = φ(k ·11) = k ·φ(11) = k ·13 (mod 50). But it is difficult
to see a general formula for this, since it is difficult to find k. It would be nice if we knew
φ(1), since then it would be easy to specify φ(m) (since φ(m) = m · φ(1) (mod 50)).

We use the fact that 41·11 ≡ 1 (mod 50): φ(41·11) ≡ 41·φ(11) ≡ 41·13 ≡ 33 (mod 50).
Thus, φ(m) = m · 33 (mod 50) for any m ∈ Z50.

15. Question: I had trouble understanding the centralizer question (problem 7 in HW3).
I did not understand why we needed to prove anything about commutativity in order
to show that the two (sub)groups were isomorphic.

Answer: Problem 7 asked you to prove that C(a) ∼= C(gag−1), for group elements a
and g. In general, since C(a) ≤ G (the centralizer is a subgroup), we know that it’s
image under any automorphism of G, say α, will also be a subgroup: α(C(a)) ≤ G.
We also know, since α is an isomorphism, that C(a) ∼= α(C(a)).

In this problem, the automorphism in question, α, is really the inner automorphism
φg, so we know that C(a) ∼= φg(C(a)) = gC(a)g−1. So, if we show that φg(C(a)) =
C(gag−1), then we will have shown C(a) ∼= C(gag−1).

In order to show that φg(C(a)) (which is just the subgroup containing elements of
the form gcg−1 where c ∈ C(a)) is the same as the subgroup C(gag−1) (which is the
subgroup of elements which commute with gag−1), we’ll show that each set contains
the other.

First, φg(C(a)) ⊆ C(gag−1) means exactly that the elements in φg(C(a)) commute
with the element gag−1, since this is how we define the set C(gag−1). Since elements
of φg(C(a)) are of the form gcg−1 where c ∈ C(a) (i.e. c commutes with a), this means
we must show (gcg−1)(gag−1) = (gag−1)(gcg−1).

Once we have shown this first containment, we’ll show the other: C(gag−1) ⊆ φg(C(a)).
That is, we will show that all elements which commute with gag−1 have the form gcg−1

for some c ∈ C(a). This is the same as saying that φg maps C(a) onto C(gag−1), and so
we go about proving this as we generally do: take an arbitrary element z ∈ C(gag−1),
find a c ∈ C(a) so that φg(c) = z. But we know the unique preimage of z is φ−1

g (z) =
g−1zg, so we need only verify that this element is the c we were looking for - that is,
we need to verify that c = g−1zg is, indeed, a member of C(a). But this just means
we need to show that c = g−1zg commutes with a.

16. Question: For the isomorphism between D3 and S3, how do we know which element
in D3 maps to which element in S3?

Answer: The short answer here is: by the process of elimination, primarily using the
fact that we know that the order of an element should be the same as the order of it’s
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image under an isomorphism, and that isomorphisms preserve the operation.

Let’s say ψ : D3 → S3. Then, first of all, we know that the identity has to go to the
identity, so ψ(R0) = (1)(2)(3) = ε ∈ S3. Next, we know that the elements R120 and
R240 each have order 3, so their images should also have order 3. There are two such
elements of S3: (1, 2, 3) and (1, 3, 2). Similarly, the images of F , F ′, and F ′′ should be
the elements of order 2 in S3, which are (1, 2), (1, 3), and (2, 3).

The final step of determining specifically ψ(R120), ψ(R240), ψ(F ), ψ(F ′) and ψ(F ′′)
requires making use of the homomorphism property of isomorphisms (the preservation
of the operation). That is, we need to make sure that our choices agree with the
operation in each group... but there is a choice involved (that is, there is more than
one isomorphism between these groups!).

So, let’s say we choose ψ(R120) = (1, 2, 3). Then this forces ψ(R240) = ψ(R120 ·R120) =
ψ(R120) ◦ ψ(R120) = (1, 2, 3) ◦ (1, 2, 3) = (1, 3, 2).

We still have a choice for ψ(F ), ψ(F ′) and ψ(F ′′), but as soon as we choose one of
these, the other two will be specified. For example, if we choose ψ(F ) = (1, 2). Then
ψ(F ′) = ψ(R120 · F ) = ψ(R120) ◦ ψ(F ) = (1, 2, 3) ◦ (1, 2) = (1, 3), and ψ(F ′′) =
ψ(F ·R120) = ψ(F ) ◦ ψ(R120) = (1, 2) ◦ (1, 2, 3) = (2, 3).

17. Question: Are we expected to know how to come up with formulas for homomor-
phisms, isomorphism, and automorphisms?

Answer: Not from scratch, no. But, if I give you some information, and I tell you
that it is enough information to specify an entire map, you should know how to use
the properties of that map (be it a homomorphism, isomorphism or automorphism) to
either give a general formula for the map or to specify the image of each group element.

For example, if I give you: α : S3 → D3 is an isomorphism and I tell you that
α((1, 2)) = F and α((1, 2, 3)) = R120, you should be able to use the fact that α is
an isomorphism to specify α((1, 3)), α((2, 3)), α((1, 3, 2)) (and of course, you should
always know what α(ε) is).

Similarly, if I tell you that β : Z12 → Z4 is a homomorphism, and β(1) = 3, you should
be able to describe β(x) generally or even specify β(2), β(3), β(4), etc.

Similarly, if I tell you that γ : Z12 → Z4 is a homomorphism, and γ(5) = 3̄, you should
be able to describe γ(x) generally. Since this example is a little more complicated than
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the last, I’ll do the whole thing here:

γ(5) = 3̄

γ(10) = γ(5 + 5) = γ(5) + γ(5) (mod 4) = 3̄ + 3̄ (mod 4) = 2̄

γ(3) = γ(5 + 10 (mod 12)) = γ(5) + γ(10) (mod 4) = 3̄ + 2̄ (mod 4) = 1̄

γ(8) = γ(5 + 3) = γ(5) + γ(3) (mod 4) = 3̄ + 1̄ (mod 4) = 0̄

γ(1) = γ(5 + 8 (mod 12)) = γ(5) + γ(8) (mod 4) = 3̄ + 0̄ = 3̄

γ(6) = γ(5 + 1) = γ(5) + γ(1) (mod 4) = 3̄ + 3̄ (mod 4) = 2̄

γ(11) = γ(5 + 6) = γ(5) + γ(6) (mod 4) = 3̄ + 2̄ (mod 4) = 1̄

γ(4) = γ(5 + 11 (mod 12)) = γ(5) + γ(11) (mod 4) = 3̄ + 1̄ (mod 4) = 0̄

γ(9) = γ(5 + 4) = γ(5) + γ(4) (mod 4) = 3̄ + 0̄ (mod 4) = 3̄

γ(2) = γ(5 + 9 (mod 12)) = γ(5) + γ(9) (mod 4) = 3̄ + 3̄ (mod 4) = 2̄

γ(7) = γ(5 + 2) = γ(5) + γ(2) (mod 4) = 3̄ + 2̄ (mod 4) = 1̄

γ(0) = γ(5 + 7 (mod 12)) = γ(5) + γ(7) (mod 4) = 3̄ + 1̄ (mod 4) = 0̄

Note: Numbers with bars over them, 0̄, 1̄, 2̄, and 3̄ are elements of Z4. Numbers
without bars over them are elements of Z12.

18. Question: Could you explain Example 4 in Chapter 8? (pg 157)

Answer: The text in red below is an excerpt from Joseph Gallian’s Contemporary

Abstract Algebra, 7th ed., page 157:

Example 4: We determine the number of elements of order 5 in Z25⊕Z5. By Theorem
8.1, we may count the number of elements (a, b) in Z25 ⊕ Z5 with the property that
5 = |(a, b)| = lcm(|a|, |b|). Clearly this requires that either |a| = 5 and |b| = 1 or 5, or
|b| = 5 and |a| = 1 or 5. We consider two mutually exclusive cases.

Case 1: |a|=5 and |b| = 1 or 5. Here there are four choices for a (namely 5, 10, 15
and 20) and five choices for b. This gives 20 elements of order 5.

I’ll pause for a moment to explain their reasoning. Since Z25 is a cyclic group and
|a| = 5 is a divisor of its order, the Fundamental Theorem of Cyclic Groups tells us
there are φ(5) = 4 elements of Z25 of order 5. We know one of these elements is
25/5 = 5, and the others are the multiples k · 5 where k is relatively prime to 25. So,
these multiples are 5, 10, 15, 20. The elements of Z5 all have order 1 or 5 (|0| = 1 and
|1| = |2| = |3| = |4| = 5), so this is why there are 5 elements of Z5 with orders 1 or 5.
There are 4×5 = 20 ways of combining these possibilities for a and b to obtain elements
of Z25 ⊕ Z5: (5, 0), (5, 1), (5, 2), (5, 3), (5, 4), (10, 0), (10, 1), (10, 2), (10, 3), (10, 4),
(15, 0), (15, 1), (15, 2), (15, 3), (15, 4), (20, 0), (20, 1), (20, 2), (20, 3), and (20, 4). Now
we continue with the second case:

Case 2: |a| = 1 and |b| = 5. This time there is one choice for a and four choices for
b, so we obtain four more elements of order 5.

Thus, Z25 ⊕ Z5 has 24 elements of order 5.
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Again, they appeal to the Fundamental Theorem of Cyclic Groups to count how many
elements of order 5 are in Z5. There are, once again, φ(5) = 4 of them: 1,2,3, and 4.
And, as always, there is only one element of order 1 - the identity. So the elements
(0, 1), (0, 2), (0, 3), and (0, 4) in Z25 ⊕ Z5 have order 5. Now our list has 24 elements.

19. Question: Could you explain Example 5 in Chapter 8? (pg 157)

Answer: For this example, I won’t reproduce the entire thing since the first part of it
is very similar to the last example. Instead, I’ll focus on the last part, which is copied
below:

Thus Z100⊕Z25 has 24 elements of order 10. Because each cyclic subgroup of order 10
has four elements of order 10 and no two of the cyclic subgroups can have an element
of order 10 in common, there must be 24/4=6 cyclic subgroups of order 10. (This
method is analogous to determining the number of sheep in a flock by counting the
legs and dividing by 4.)

So, the point of the example is to use what we know about the orders of elements
in direct products to help us count the number of cyclic subgroups of a given order
in the direct product Z100 ⊕ Z25. Once we have counted, and find that there are 24
elements of order 10, the book asks us to notice that if (a, b) is an element of order
10, so is (3a, 3b), (7a, 7b) and (9a, 9b) (each multiple k · (a, b) for k relatively prime to
10). Furthermore, we know that each of these elements generates the same subgroup
of order 10. So, since we want to count the number of distinct cyclic subgroups of
order 10, and we know there is one distinct group for every four elements of order 10,
we conclude that there are 24/4=6, total.

20. Question: If p is a prime other than 2, why is U(2p) isomorphic to Zp−1?

Answer: By Theorem 8.3, U(2p) ∼= U(2)⊕U(p). But, U(2) = {1} and U(p) is cyclic of
order p− 1, so U(p) ∼= Zp−1. But, the direct product of the trivial group with another
group is just that other group: {e} ⊕G ∼= G (via the isomorphism taking (e, g) to g).
Thus, U(2p) ∼= U(2)⊕ U(p) ∼= {1} ⊕ Zp−1

∼= Zp−1.

21. Question: In class, we saw some examples of direct products of finite cyclic groups.
Sometimes these direct products were not cyclic, but other times they were, and for
these we found another cyclic group to which they were isomorphic. For instance,
Z12⊕Z6 wasn’t cyclic but Z3⊕Z8 was cyclic, and was isomorphic to Z24. I understand
that Z3 ⊕ Z8 is cyclic because gcd(3, 8) = 1, and we have a therorem about that, but
I’m not quite sure I understand how we know that it’s isomorphic to Z24.

Answer: Theorem 8.2 is the one which tells us when a direct product of finite cyclic
groups is again cyclic. It says, if G and H are finite cyclic groups, G ⊕H is cyclic if
and only if gcd(|G|, |H|) = 1. It doesn’t specify that G⊕H ∼= Z|G|·|H|, but this is the
case. We know that the order of a direct product is the product of the orders of the
component groups: |G⊕H| = |G| · |H|. So, if G⊕H is cyclic, then it is a cyclic group
of order |G| · |H|, and this is isomorphic to Z|G|·|H|.

To see why this last statement is true, I’ll prove something more general: Let G be a
finite cyclic group of order n, then G ∼= Zn. Since G is cyclic, we know there is at least
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1 generator of the group, so let a ∈ G be a generator (i.e. 〈a〉 = G). Then, for every
element g ∈ G, there is a k ∈ Z s.t. ak = g. Now, let γ : G→ Zn via γ(g) = k (mod n).

Let g = ak and g′ = al be elements of G. Then γ(gg′) = γ(ak+l) = k+ l (mod n). But,
γ(g) + γ(g′) (mod n) = k + l (mod n), so we see that γ is a homomorphism. Now,
suppose that γ(g) = γ(g′), then k ≡ l (mod n), which means that k = mn + l for
some m ∈ Z. But then g = ak = amn+l = amnal = (an)mal = emal = al = g′, so γ is
one-to-one. Now, since γ is a map from a finite set to another finite set of the same
size, we could stop here, but instead, we’ll show that it’s onto, as well.

Let k ∈ Zn. Then ak ∈ G and γ(ak) = k. So, now we have shown that every cyclic
group of order n is isomorphic to Zn.

22. Question: I understand more or less how external direct products work when only Zn

groups or U(m) groups are involved. Though I have trouble visualizing how to do the
products of two different types of group (such as D3 and S4 for example). Can this
even be done?

Answer: Yes! Let’s consider the elements (R120, (1, 2, 3, 4)) and (F, (1, 2)(3, 4)) in
the direct product D3 ⊕ S4. Their product is: (R120, (1, 2, 3, 4))(F, (1, 2)(3, 4)) =
(R120F, (1, 2, 3, 4)(1, 2)(3, 4)) = (F ′, (1, 3)(2)(4)) = (F ′, (1, 3)) ∈ D3 ⊕ S4.

While we’re on the subject, let’s compute the order of each of these elements:
|(R120, (1, 2, 3, 4))| = lcm(|R120|, |(1, 2, 3, 4)|) = lcm(3, 4) = 12 (recall that |R120| = 3
in D3 and the order of a cycle is it’s length). |(F, (1, 2)(3, 4))| = lcm(|F |, |(1, 2)(3, 4)|) =
lcm(2, lcm(2, 2)) = 2 (recall that the order of a product of disjoint cycles, like (1, 2)(3, 4),
is the lcm of the cycle lengths).

23. Question: I don’t really understand theorem 8.3 (specifically the line where it says
that Us(st) ∼= U(t) and Ut(st) ∼= U(s)).

Answer: In the general direct product setting, if we have G ∼= H ⊕ K, then by
Theorem 6.3, there are subgroups H̃ ≤ G and K̃ ≤ G with H ∼= H̃ and K ∼= K̃ since
K ∼= {eH} ⊕K ≤ H ⊕K ∼= G and H ∼= H ⊕ {eK} ≤ H ⊕K ∼= G.

The book introduces the notation Uk(n) and then uses this notation in Theorem 8.3 to

specify that in the case of U(st) ∼= U(s)⊕ U(t), we can identify these subgroups Ũ(s)

and Ũ(t). Namely, Ut(st) ≤ U(st) and Ut(st) ∼= U(s) (i.e. Ut(st) = Ũ(s)). A similar
statement holds for Us(st).

24. Question: When we did the example in class on left cosets, we had G = Z12 and
H = 〈4〉. We listed the cosets of H in G as: 4 + H, 3 + H, 2 + H, and 1 + H. Are
these the only cosets? can’t we have x + H for 0 ≤ x < 12? I wasn’t sure if we just
didn’t list them all in class, or if you can’t actually have them all.

Answer: These are all of the distinct cosets. Let’s calculate them all here to see what
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that means:

0 +H = {0 + 0, 0 + 4, 0 + 8} = {0, 4, 8} = H

1 +H = {1 + 0, 1 + 4, 1 + 8} = {1, 5, 9}
2 +H = {2 + 0, 2 + 4, 2 + 8} = {2, 6, 10}
3 +H = {3 + 0, 3 + 4, 3 + 8} = {3, 7, 11}
4 +H = {4 + 0, 4 + 4, 4 + 8} = {4, 8, 0} = H

5 +H = {5 + 0, 5 + 4, 5 + 8} = {5, 9, 1} = 1 +H

6 +H = {6 + 0, 6 + 4, 6 + 8} = {6, 10, 2} = 2 +H

7 +H = {7 + 0, 7 + 4, 7 + 8} = {7, 11, 3} = 3 +H

8 +H = {8 + 0, 8 + 4, 8 + 8} = {8, 0, 4} = 4 +H = H

9 +H = {9 + 0, 9 + 4, 9 + 8} = {9, 1, 5} = 5 +H = 1 +H

10 +H = {10 + 0, 10 + 4, 10 + 8} = {10, 2, 6} = 6 +H = 2 +H

11 +H = {11 + 0, 11 + 4, 11 + 8} = {11, 3, 7} = 7 +H = 3 +H

So, yes, there is a coset x +H for each x ∈ {0, 1, . . . 11}, but even if x 6= 1, 2, 3, 4, the
coset x+H will be the same as one of 1 +H, 2 +H, 3 +H or 4 +H.

25. Question: How do we determine the cosets for more complicated groups, of which we
do not know all the elements?

Answer: We will never work with any groups whose elements are unknown. Even if the
group is infinite - or just very large - so that it would be impossible (or impractical) to
write down all of the group elements, we will at least always have some description of a
typical element (as in matrix groups), and using this, we could write down descriptions
of the cosets.

For example, consider the group S8. Then we know that A8 ≤ S8 (the even permuta-
tions form a subgroup). Since |A8| = |S8|/2, we know there are two cosets of A8 in S8.
We also know that if a permutation is not in A8, this means it is odd. So the two cosets
of A8 are the even permutations and the odd permutations. One coset representative
of the odd permutations is (1, 2) (since (1, 2) is an odd permutation), so we can write
the two cosets as A8 and (1, 2)A8.

26. Question: When we were proving the Normal Subgroup Test, we went from xhx−1 ∈
H, to xh ∈ Hx. Also, just to be clear, Hx means “the right coset containing x,” right?

Answer: First, if xhx−1 ∈ H, this means xhx−1 = h′ for some h′ ∈ H. But then,
xh = h′x, which means exactly that xh ∈ Hx. Secondly, yes, Hx is the right coset
containing x. So, the following statements are equivalent:

(a) H is a normal subgroup of G

(b) xH = Hx for all x ∈ G (read: the left coset containing x is the same set as the
right coset containing x)

(c) xhx−1 ∈ H for any h ∈ H and any x ∈ G

11
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(d) xh ∈ Hx (the element xh is an element of the right coset containing x for any
x ∈ G and h ∈ H)

Note: this is not an exhaustive list of equivalent statements.

27. Question: For normal subgroups, why does aH = Ha not imply that ah = ha for all
h? Can we possibly do an example that shows that?

Answer: Consider the example in class where G = D4 and R = {R0, R90, R180, R270}.
There are only two left cosets of this subgroup, the rotations and the reflections: R
and HR = V R = DR = D′R = {H, V,D,D′}. The right and left cosets computations
are given below:

R0R = {R0R0, R0R90, R0R180, R0R270} = {R0, R90, R180, R270}
RR0 = {R0R0, R90R0, R180R0, R270R0} = {R0, R90, R180, R270} = R0R

R90R = {R90R0, R90R90, R90R180, R90R270} = {R90, R180, R270, R0}
RR90 = {R0R90, R90R90, R180R90, R270R90} = {R90, R180, R270, R0} = R90R

R180R = {R180R0, R180R90, R180R180, R180R270} = {R180, R270, R0, R90}
RR180 = {R0R180, R90R180, R180R180, R270R180} = {R180, R270, R0, R90} = R180R

R270R = {R270R0, R270R90, R270R180, R270R270} = {R270, R0, R90, R180}
RR270 = {R0R270, R90R270, R180R270, R270R270} = {R270, R0, R90, R180} = R270R

HR = {HR0, HR90, HR180, HR270} = {H,D, V,D′}
RH = {R0H,R90H,R180H,R270H} = {H,D′, V,D} = HR

V R = {V R0, V R90, V R180, V R270} = {V,D′, H,D}
RV = {R0V,R90V,R180V,R270V } = {V,D,H,D′} = V R

DR = {DR0, DR90, DR180, DR270} = {D, V,D′, H}
RD = {R0D,R90D,R180D,R270D} = {D,H,D′, V } = DR

D′R = {D′R0, D
′R90, D

′R180, D
′R270} = {D′, H,D, V }

RD′ = {R0D
′, R90D

′, R180D
′, R270D

′} = {D′, V,D,H} = D′R

So, we can see that for each a ∈ D4, aR = Ra (so, R / D4), but if we take an isolated
element of R, say R90, we don’t have aR90 = R90a for any a which is not a rotation.
In particular, if a = H, HR90 = D but R90H = D′. So elements of normal subgroups
do not have to commute with all elements of the group.
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