Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own) and write down the names of the classmates with whom you worked. Be sure to use complete sentences. Note: Proofs should contain words, not just symbols.

1. (Chapter 18, Exercise 30) Show that $3 x^{2}+4 x+3 \in Z_{5}[x]$ factors as $(3 x+2)(x+4)$ and $(4 x+1)(2 x+3)$. Explain why this does not contradict the corollary of Theorem 18.3.
2. (a) (Chapter 19, Exercise 2) (Subspace Test) Prove that a nonempty subset U of a vector space V over a field F is a subspace of V if, for every u and u^{\prime} in U and every a in $F, u+u^{\prime} \in U$ and $a u \in U$.
(b) (Chapter 19, Exercise 28) Let V and W be vector spaces over a field F and let T be a linear transformation from V to $W(T: V \rightarrow W)$. Prove that the image of V under T is a subspace of W.
3. $($ Chapter 20, Exercise 2) Show $\mathbb{Q}(\sqrt{2}, \sqrt{3})=\mathbb{Q}(\sqrt{2}+\sqrt{3})$.
4. (a) (Chapter 19, Exercise 22) If V is a vector space of dimension n over the field Z_{p}, how many elements are in V ? (Give a brief explanation, but no "proof" is required here.)
(b) (from Chapter 20, Exercise 8) Let $F=Z_{2}$ and let $f(x)=x^{3}+x+1 \in F[x]$. Suppose that α is a zero of $f(x)$ in some extension of F. The field $F(\alpha)$ can be viewed as a vector space over F. What is the dimension of this vector space? Give a basis for $F(\alpha)$ over F.
(c) How many elements does $F(\alpha)$ have? Express each member of $F(\alpha)$ in terms of α.
(d) Write out a complete multiplication table for $F(\alpha)$.
