Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own) and write down the names of the classmates with whom you worked. Be sure to use *complete sentences*. Note: Proofs should contain *words*, not just symbols.

- 1. (Chapter 12, Exercise 19) Let R be a ring. The center of R is the set $\{x \in R \mid ax = xa \ \forall a \in R\}$. Prove that the center of a ring is a subring.
- 2. (Chapter 13, Exercise 40) Show that $Z_7[\sqrt{3}] = \{a + b\sqrt{3} \mid a, b \in Z_7\}$ is a field.
- 3. (Chapter 14, Exercise 14) Let A and B be ideals of a ring. Prove that $AB \subseteq A \cap B$. Note: the product AB is defined in problem 12 as $AB = \{a_1b_1 + a_2b_2 + \cdots + a_nb_n \mid a_i \in A, b_i \in B, n \in \mathbb{Z}^+\}$. If you find it helpful, you may use the result of problem 12.
- 4. (Chapter 14, Exercise 16) If A and B are ideals of a commutative ring R with unity and A + B = R, show that $A \cap B = AB$.
- 5. (Chapter 14, Exercise 36) Let R be a ring and let I be an ideal of R. Prove that the factor ring R/I is commutative if and only if $rs sr \in I$ for all $r, s \in R$.
- 6. (Chapter 15, Exercise 66) Let $R = \left\{ \begin{bmatrix} a & b \\ b & a \end{bmatrix} \middle| a, b \in \mathbb{Z} \right\}$, and let ϕ be the mapping that takes $\begin{bmatrix} a & b \\ b & a \end{bmatrix}$ to $a b \in \mathbb{Z}$.
 - (a) Show that ϕ is a homomorphism.
 - (b) Determine the kernel of ϕ .
 - (c) Show that $R/\ker\phi$ is isomorphic to \mathbb{Z} .
 - (d) Is ker ϕ a prime ideal?
 - (e) Is ker ϕ a maximal ideal?