Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own) and write down the names of the classmates with whom you worked. Be sure to use complete sentences. Note: Proofs should contain words, not just symbols.

1. (Chapter 9, Exercise 46) If G is a group and $|G: Z(G)|=4$, prove that $G / Z(G) \cong$ $Z_{2} \oplus Z_{2}$. (You may use - without proof - the fact that any group of order 4 is isomorphic to either Z_{4} or $Z_{2} \oplus Z_{2}$.)
2. (Chapter 9, Exercise 54) Show that the intersection of two normal subgroups of G is a normal subgroups of G. Generalize.
3. (Chapter 10, Exercise 32) Find a homomorphism ϕ from $U(30)$ to $U(30)$ with kernel $\{1,11\}$ and $\phi(7)=7$.
4. (Chapter 10, Exercise 38) For each pair of positive integers m and n, we can define a homomorphism from \mathbb{Z} to $Z_{m} \oplus Z_{n}$ by $x \mapsto(x(\bmod m), x(\bmod n))$. What is the kernel when $(m, n)=(3,4)$? What is the kernel when $(m, n)=(6,4)$? Generalize.
