Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own) and write down the names of the classmates with whom you worked. Be sure to use complete sentences. Note: Proofs should contain words, not just symbols.

1. Write each of the following groups as external direct products.
(a) Write Z_{26} as the direct product of two smaller cyclic groups.
(b) Write Z_{180} as the direct product of smaller cyclic groups in at least two different ways. (Note: these different ways will obviously be isomorphic to one another.)
2. The dihedral group of order $8, D_{4}$, has a cyclic subgroup of order 4 (the rotations) and several subgroups of order 2 . Give one reason why $D_{4} \not \approx Z_{4} \oplus Z_{2}$.
3. (Chapter 8, exercise 14) Suppose $G_{1} \cong G_{2}$ and $H_{1} \cong H_{2}$. Prove $G_{1} \oplus H_{1} \cong G_{2} \oplus H_{2}$. State the general case (if $G_{1} \cong \tilde{G}_{1}, G_{n} \cong \tilde{G}_{n}, \ldots, G_{n} \cong \tilde{G}_{n}$, then what can you say about the direct products of the G_{i} 's and of the \tilde{G}_{i} 's?)
4. (Chapter 7, exercise 14) Suppose that K is a proper subgroup of H and H is a proper subgroup of G. If $|K|=42$ and $|G|=420$, what are the possible orders of H ? Explain your reasoning.
5. (Chapter 7, exercise 24) Suppose that G is a group with more than one element and G has no proper, nontrivial subgroups. Prove that $|G|$ is prime. (Do not assume at the outset that G is finite.)
6. (Chapter 9, exercise 14) What is the order of the element $14+\langle 8\rangle$ in the factor group $Z_{24} /\langle 8\rangle$?
7. Let Q be the group of the quaternions and let H be the subgroup of $Q: H=\{1,-1\}$. The Cayley table for Q is given below.
(a) Show that H is normal in Q. (If it is helpful, you may use facts you proved in previous homework assignments.)
(b) Make a Cayley table for the factor group Q / H and from that, decide whether Q / H is isomorphic to Z_{4} or $Z_{2} \oplus Z_{2}$.

	1	-1	i	$-i$	j	$-j$	k	$-k$
1	1	-1	i	$-i$	j	$-j$	k	$-k$
-1	-1	1	$-i$	i	$-j$	j	$-k$	k
i	i	$-i$	-1	1	k	$-k$	$-j$	j
$-i$	$-i$	i	1	-1	$-k$	k	j	$-j$
j	j	$-j$	$-k$	k	-1	1	i	$-i$
$-j$	$-j$	j	k	$-k$	1	-1	$-i$	i
k	k	$-k$	j	$-j$	$-i$	i	-1	1
$-k$	$-k$	k	$-j$	j	i	$-i$	1	-1

