Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own) and write down the names of the classmates with whom you worked. Be sure to use complete sentences. Note: Proofs should contain words, not just symbols.

1. Let $\sigma=\left[\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3\end{array}\right]$ and $\theta=\left[\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 5 & 8 & 7 & 1 & 2 & 4 & 9\end{array}\right]$.
(a) Determine the orders of each of these permutations, $|\sigma|$ and $|\theta|$. Explain.
(b) Determine σ^{11} and θ^{11}. If you do this the hard way (computing each of the 11 powers for each permutation), show your work. If you find an easier way (which I highly recommend doing), give a sentence or so explaining your reasoning.
2. (a) Determine whether $\eta=(1,2,3), \mu=(2,4,3,1)$ and $\nu=(1,3)(2,5,4)$ are even permutations or odd permutations. Be sure to give an explanation.
(b) (Chapter 5, Exercise 14) In S_{n}, let α be an r-cycle, β an s-cycle, and γ a t-cycle. Complete the following statements: $\alpha \beta$ is even if and only if $r+s$ is
\qquad ; $\alpha \beta \gamma$ is even if and only if $r+s+t$ is \qquad -
(c) (Chapter 5, Exercise 16) Associate an even permutation with the number +1 and an odd permutation with the number -1 . Draw an analogy between the result of multiplying two permutations and the result of multiplying their corresponding numbers +1 or -1 .
3. (Chapter 5, Exercise 48) Show that for $n \geq 3, Z\left(S_{n}\right)=\{\epsilon\}$ (the center of S_{n} is trivial).
4. Theorems 6.2 and 6.3 give us a number of properties of isomorphisms. Using these, give 2 reasons justifying each of the following statements:
(a) $D_{4} \not \neq S_{4}$.
(b) $D_{4} \not \not 二 Q$, where Q is the group of the quaternions.
5. (a) Describe the elements of $\operatorname{Aut}\left(Z_{10}\right)$.
(b) (Chapter 6, Exercise 20) Suppose that $\phi: Z_{50} \rightarrow Z_{50}$ is an automorphism with $\phi(11)=13$. Determine a formula for $\phi(x)$.
6. (a) Prove that complex conjugation gives an automorphism of \mathbb{C}^{*} under multiplication.
(b) (Chapter 6, Exercise 10) Let G be a group. Prove that the mapping $\alpha(g)=g^{-1}$ for all g in G is an automorphism if and only if G is Abelian.
7. (Chapter 6, Exercise 34) If a and g are elements of a group, prove that $C(a)$ is isomorphic to $C\left(g a g^{-1}\right)$.
8. (Chapter 5, Exercise 10) Show that a function from a finite set S to itself is one-to-one if and only if it is onto. Is this true when S is infinite? Suppose G is a finite group and $\varphi: G \rightarrow G$ is a group homomorphism. How could we use what we just proved to simplify the proof that φ is an automorphism?
9. (Chapter 6, Exercise 6) Prove that the notion of group isomorphism is transitive. That is, if G, H and K are groups and $G \cong H$ and $H \cong K$, then $G \cong K$.
