Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own) and write down the names of the classmates with whom you worked. Be sure to use *complete sentences*. Note: Proofs should contain *words*, not just symbols.

1. Let
$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 5 & 4 & 6 & 3 \end{bmatrix}$$
 and $\theta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 5 & 8 & 7 & 1 & 2 & 4 & 9 \end{bmatrix}$.

- (a) Determine the orders of each of these permutations, $|\sigma|$ and $|\theta|$. Explain.
- (b) Determine σ^{11} and θ^{11} . If you do this the hard way (computing each of the 11 powers for each permutation), show your work. If you find an easier way (which I *highly* recommend doing), give a sentence or so explaining your reasoning.
- 2. (a) Determine whether $\eta = (1, 2, 3)$, $\mu = (2, 4, 3, 1)$ and $\nu = (1, 3)(2, 5, 4)$ are even permutations or odd permutations. Be sure to give an explanation.
 - (b) (Chapter 5, Exercise 14) In S_n , let α be an r-cycle, β an s-cycle, and γ a t-cycle. Complete the following statements: $\alpha\beta$ is even if and only if r + s is _____; $\alpha\beta\gamma$ is even if and only if r + s + t is _____.
 - (c) (Chapter 5, Exercise 16) Associate an even permutation with the number +1 and an odd permutation with the number -1. Draw an analogy between the result of multiplying two permutations and the result of multiplying their corresponding numbers +1 or -1.
- 3. (Chapter 5, Exercise 48) Show that for $n \ge 3$, $Z(S_n) = \{\epsilon\}$ (the center of S_n is trivial).
- 4. Theorems 6.2 and 6.3 give us a number of properties of isomorphisms. Using these, give 2 reasons justifying each of the following statements:
 - (a) $D_4 \not\cong S_4$.
 - (b) $D_4 \not\cong Q$, where Q is the group of the quaternions.
- 5. (a) Describe the elements of $Aut(Z_{10})$.
 - (b) (Chapter 6, Exercise 20) Suppose that $\phi : Z_{50} \to Z_{50}$ is an automorphism with $\phi(11) = 13$. Determine a formula for $\phi(x)$.
- 6. (a) Prove that complex conjugation gives an automorphism of C^{*} under multiplication.
 - (b) (Chapter 6, Exercise 10) Let G be a group. Prove that the mapping $\alpha(g) = g^{-1}$ for all g in G is an automorphism if and only if G is Abelian.
- 7. (Chapter 6, Exercise 34) If a and g are elements of a group, prove that C(a) is isomorphic to $C(gag^{-1})$.

- 8. (Chapter 5, Exercise 10) Show that a function from a finite set S to itself is one-to-one if and only if it is onto. Is this true when S is infinite? Suppose G is a finite group and $\varphi : G \to G$ is a group homomorphism. How could we use what we just proved to simplify the proof that φ is an automorphism?
- 9. (Chapter 6, Exercise 6) Prove that the notion of group isomorphism is transitive. That is, if G, H and K are groups and $G \cong H$ and $H \cong K$, then $G \cong K$.