Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own). Be sure to use complete sentences. Note: Proofs should contain words, not just symbols.

1. Define the center of a group $G, Z(G)$, to be the subset of elements in G that commute with every element of G. That is, $Z(G)=\{g \in G \mid g h=h g \forall h \in G\}$. Define the centralizer of an element $h \in G, C(h)$ or $C_{G}(h)$, to be the set of elements in G which commute with h. That is, $C(h)=\{g \in G \mid g h=h g\}$.
(a) Let Q be the group of quaternions (the group you calculated the Cayley table for in problem 1 of last week's homework). What is $Z(Q)$?
(b) Find the centralizer of each element in Q.
(c) Notice that for each $q \in Q,\langle q\rangle \leq C(q)$. Is this always true? If yes, explain. If no, give a counterexample.
2. (Chapter 3, Exercise 4) Prove that in any group, an element and its inverse have the same order. What does this mean for $\langle a\rangle$ and $\left\langle a^{-1}\right\rangle$? Prove it.
3. (Chapter 3, Exercise 18) If H and K are subgroups of G, show that $H \cap K$ is a subgroup of G.
4. (Chapter 3, Exercise 34) Suppose a and b are group elements such that $|a|=2, b \neq e$, and $a b a=b^{2}$. Determine $|b|$.
5. (Chapter 4, Exercise 14) Suppose that a cyclic group G has exactly three subgroups: G itself, $\{e\}$, and a subgroup of order 7 . What is $|G|$? What can you say if 7 is replaced with p where p is a prime?
6. (Chapter 4, Exercise 32) Determine the subgroup lattice for Z_{12}. Note: In class we discussed how to find all the subgroups of a cyclic group. A subgroup lattice is a diagram which depicts the containment relationships between these. See pages 80-81 in your textbook for an example.
7. (Chapter 4, Exercise 40) Let m and n be elements of the group \mathbb{Z}. Find a generator for the group $\langle m\rangle \cap\langle n\rangle$.
8. (Chapter 4, Exercise 44) Suppose that G is a cyclic group and that 6 divides $|G|$. How many elements of order 6 does G have? If 8 divides $|G|$, how many elements of order 8 does G have? If a is one element of order 8 , list the other elements of order 8 .
9. (Chapter 5, Exercise 18) Let $\alpha=\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 1 & 7 & 8 & 6\end{array}\right]$ and $\beta=\left[\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 3 & 8 & 7 & 6 & 5 & 2 & 4\end{array}\right]$. Write α, β, and $\alpha \beta$ as
(a) products of disjoint cycles,
(b) products of 2-cycles.
