Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own). Be sure to use complete sentences. Note: Proofs should contain words, not just symbols.

1. Let \mathbb{H} be the set $\{1,-1, i,-i, j,-j, k,-k\}$, and define multiplication on \mathbb{H} by the following rules: 1 is the identity, $i^{2}=j^{2}=k^{2}=-1, i \cdot j=k, j \cdot k=i$, and for any element $a \in \mathbb{H},(-1) \cdot a=a \cdot(-1)=-a$.
(a) Complete the following Cayley table for \mathbb{H} (you can re-copy it onto your homework, if that is easier).

	1	-1	i	$-i$	j	$-j$	k	$-k$
1								
-1								
i			-1		k			
$-i$								
j					-1		i	
$-j$								
k							-1	
$-k$								

(b) Is \mathbb{H} Abelian? What happens when you reverse the order of the product of two non-identity (or negative identity) elements? In other words, if $a, b \in \mathbb{H}$ and neither is 1 or -1 , how does $b \cdot a$ relate to $a \cdot b$?
(c) Find a subgroup of order 4 of \mathbb{H}, list its elements and use one of the subgroup tests of Chapter 3 to verify that it is, in fact, a subgroup.
2. Recall that we can build the dihedral group of order $2 n$, for any n, just as we did for D_{4}.
(a) With pictures and words, describe the elements of D_{3}.
(b) Identify and describe all subgroups of D_{3}. Explain how you know these are all the possibilities. (You may use the Cayley table for D_{3} which appears at the back of your text book.)
3. The set of all real, upper triangular $n \times n$ matrices is a group under matrix multiplication for any n. Using this fact, prove that the set of real 3×3 matrices of the form $\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ forms a group under matrix multiplication. This group is called the Heisenberg group. Hint: This group can be viewed as a subgroup of all 3×3 upper triangular matrices.
4. Prove that the set of orthogonal $n \times n$ matrices, $O(n)=\left\{A \in M_{n}(\mathbb{R}): A^{T} A=A A^{T}=I\right\}$, is a group under matrix multiplication.

Hint: Use facts about the transpose from linear algebra.
5. (Chapter 2, Exercise 14) Let G be a group with the following property: Whenever a, b, and c belong to G and $a b=c a$, then $b=c$. Prove that G is Abelian.

