Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates and/or your instructor. After doing so, please write up your solutions legibly on a separate sheet (or sheets) of paper (this part should be done on your own). Be sure to use *complete sentences*. Note: Proofs should contain *words*, not just symbols.

1. Let \mathbb{H} be the set $\{1, -1, i, -i, j, -j, k, -k\}$, and define multiplication on \mathbb{H} by the following rules: 1 is the identity, $i^2 = j^2 = k^2 = -1$, $i \cdot j = k$, $j \cdot k = i$, and for any element $a \in \mathbb{H}$, $(-1) \cdot a = a \cdot (-1) = -a$.

(a) Complete the following Cayley table for \mathbb{H} (you can re-copy it onto your homework, if that is easier).

	1	-1	i	-i	j	-j	k	-k
1								
-1								
i			-1		k			
-i								
j					-1		i	
-j								
k							-1	
-k								

(b) Is \mathbb{H} Abelian? What happens when you reverse the order of the product of two non-identity (or negative identity) elements? In other words, if $a, b \in \mathbb{H}$ and neither is 1 or -1, how does $b \cdot a$ relate to $a \cdot b$?

(c) Find a subgroup of order 4 of \mathbb{H} , list its elements and use one of the subgroup tests of Chapter 3 to verify that it is, in fact, a subgroup.

- 2. Recall that we can build the dihedral group of order 2n, for any n, just as we did for D_4 .
 - (a) With pictures and words, describe the elements of D_3 .

(b) Identify and describe all subgroups of D_3 . Explain how you know these are all the possibilities. (You may use the Cayley table for D_3 which appears at the back of your text book.)

3. The set of all real, upper triangular $n \times n$ matrices is a group under matrix multiplication for any n. Using this fact, prove that the set of real 3×3 matrices of the form $\begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ forms a group under matrix multiplication. This group is called

the Heisenberg group. *Hint: This group can be viewed as a subgroup of all* 3×3 *upper triangular matrices.*

4. Prove that the set of orthogonal $n \times n$ matrices,

 $O(n) = \{A \in M_n(\mathbb{R}) : A^T A = A A^T = I\},$ is a group under matrix multiplication.

 ${\it Hint:} \ {\it Use facts \ about \ the \ transpose \ from \ linear \ algebra}.$

5. (Chapter 2, Exercise 14) Let G be a group with the following property: Whenever a, b, and c belong to G and ab = ca, then b = c. Prove that G is Abelian.