H.W. 3

Due Monday Jan. 26th

Tuesday: u-substitution with limits of integration

Use u-substitution as given in the problem to transform the definite integral shown. Then use the limits of integration determined by u to evaluate the integral.
(i)

$$
\begin{gathered}
\int_{0}^{2} x e^{x^{2}} d x \\
u=x^{2}
\end{gathered}
$$

(ii)

$$
\begin{gathered}
\int_{-2}^{-1} 2 x \cos \left(x^{2}\right) \sin ^{2}\left(x^{2}\right) d x \\
u=\sin \left(x^{2}\right)
\end{gathered}
$$

Use integration by parts (possibly multiple times) and/or u-substitution, where appropriate, to evaluate the following integrals:
You need only do one of (v), (vi) and (vii)
(i)

$$
\int_{0}^{-1} x^{2} \cos \left(x^{3}\right) d x
$$

(ii)

$$
\int_{0}^{\pi / 4} \cos (3 x) \sin (4 x) d x
$$

(iii)

$$
\int_{0}^{2}\left(6 x^{2}+2 x\right)\left(2 x^{3}+x^{2}\right)^{-3 / 4} d x
$$

(iv)

$$
\int_{0}^{\pi / 4} \cos (x) \sin (x) d x
$$

*(v)

$$
\int_{0}^{1} x^{7} e^{x^{4}} d x
$$

*(vi)

$$
\int_{\sqrt{\frac{\pi}{2}}}^{\sqrt{\pi}} \frac{1}{x^{5}} \sin \left(\frac{1}{x^{2}}\right) d x
$$

*(vii)

$$
\int_{0}^{\ln (\pi / 4)} e^{3 x} \sin \left(e^{x}\right) d x
$$

