H.W. 2

Due Tuesday Jan. 20th

Monday: Fundamental Theorem of Calculus 1

Use the first part of The Fundamental Theorem of Calculus to compute the derivative of the following functions:
(i) Hint: Write $g(x)=\int_{1}^{x} \ln (t) d t$ and $h(x)=x^{4}$. Then construct f from these functions.

$$
f(x)=\int_{1}^{x^{4}} \ln (t) d t
$$

(ii) Hint: The problem is that the variable x appears on both sides of the limits of integration. Use a property of definite integrals to fix this.

$$
f(x)=\int_{x^{2}}^{x^{3}} t^{2} d t
$$

Wednesday: Fundamental Theorem of Calculus 2

1)

Recall that the second conclusion of the Fundamental Theorem of Calculus uses an anti-derivative to compute $\int_{a}^{b} f(x) d x$. By the first conclusion of the theorem, one such anti-derivative is $g(x)=\int_{a}^{x} f(t) d t$ (The "area from a up til x " function). If $f(x)=x^{2}$, then can all anti-derivatives of f be written as $F(x)=\int_{a}^{x} f(t) d t$ for some number a ? (Hint: Recall anti-derivatives of the same function can only differ by a constant. This means you only need to know the anti-derivative at one value to determine which one it is. Keeping this in mind, try arguing that, by choosing a appropriately, you can make $F(0)=\int_{a}^{0} t^{2} d t$ any number you want.)
2)

Can you find a familiar function $h(x)$ such that there is an anti-derivative of h that cannot be written as $H(x)=\int_{a}^{x} h(t) d t$ for any number a ? (Hint: Find a function with an anti-derivative that is never 0.$)$

3)

When you're given the natural \log function $\ln (x)$, it is defined as the inverse of the exponential function e^{x} (that is $\ln \left(e^{x}\right)=x$ and $e^{\ln (x)}=x$). However, suppose we didn't know the value of e. (I mean really, how do we know the value of e anyways?) Notice that $\ln (x)$ is an anti-derivative of $1 / x$ (indeed, the derivative of $\ln (x)$ is $1 / x)$. First, find an a such that $\ln (x)=\int_{a}^{x} 1 / t d t$. Then use this definition of $\ln (x)$ to give a loose description of a method to approximate e. (Hint: Look at the graph of $1 / x$ below. Notice that if $\ln (z)=1$, then by taking the exponential on both sides we get $z=e$. Then think about how to approximate z.)

Friday: u Substitution Trick

(i) Find an anti-derivative that could be used to compute $\int_{a}^{b} g^{\prime}(x) f^{\prime}(g(x)) d x$.
(ii) Compute the following (Hint: Use the u substitution trick twice and remember to "work from the inside out".)

$$
\int_{0}^{1}(2 x+1) \cos \left(x^{2}+x\right) e^{\sin \left(x^{2}+x\right)} d x
$$

