Midterm 1 Review Sheet

List of Topics:

- Derivative Rules and Basic Derivatives
- Chain Rule
- Product Rule
- Basic Derivatives: polynomials, trigonometric functions, $\ln (x), e^{x}, x^{n / m}$
- Rectangular Approximations (Riemann Sums)
- Left end point (L_{n})
- Right end point $\left(R_{n}\right)$
- Midpoint (M_{n})
- Definite Integral
$-\int_{a}^{b} f(x) d x$
- Definition in term of Riemann Sums
- Geometric Interpretation
- Fundamental Theorem of Calculus part 1
- Statement of Theorem
- Applications
- Fundamental Theorem of Calculus part 2
- Statement of Theorem
- Applications
- Indefinite Integral
$-\int f(x) d x$
- Don't forgot to add " $+C$ " to your anti-derivative
- u - Substitution (reverse chain rule)
$-d u=\left(\frac{d u}{d x}\right) d x=u^{\prime} d x$
- Recognize when to use it
$-u=$ the "nested" function
$-u=$ the function whose derivative is sitting outside
- You can use either x bounds on an anti-derivative written in terms of x, or use the u bounds on an anti-derivative written in terms of u.
- Integration by Parts (reverse product rule)
$-\int_{a}^{b} u d v=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v d u$
- Use it when either told to or when u - Substitution fails
- Remember that the "parts" (u and $d v$) are parts of a product
- You have a limited number of choices for what u and $d v$ can be, sometimes recognizing a u - Substitution integral as part of the product is necessary to determine your choices for u and $d v$.

Representative sample of problems

Derivatives Practice:

Find the Derivative

(i)

$$
f(x)=e^{x^{2}} \sin (\ln (x))
$$

(ii)

$$
f(x)=\ln \left(\tan \left(e^{\left(x^{2}+x\right)}\right)\right)
$$

(iii)

$$
f(x)=\frac{\arcsin (\ln (x))}{e^{x}\left(x^{4}-3 x^{3}+x-e\right)}
$$

(iv)

$$
f(x)=\ln (\ln (x)) e^{\sin (x)}-\sin (\sin (\sin (x)))
$$

Find L_{n}, R_{n}, and M_{n} for the given function on the given interval:
(Remember that n tells you how many equal sized pieces to break the interval into to use as the base of your rectangles)
(i) $f(x)=2 x^{3}-x^{2}+1 \quad$ Interval: $[0,3] \quad n=3$
(ii) $f(x)=\sin (x)+1 / 2 \quad$ Interval: $[-2 \pi, 2 \pi] \quad n=4$
(iii) $f(x)=3 x+2 \quad$ Interval: $[-3,-2] \quad n=5$

Definition: Let f be a continuous function on the interval $[a, b]$. The definite integral of f over the interval $[a, b]$, denoted $\int_{a}^{b} f(x) d x$, is defined to be

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty} M_{n}
$$

(all of the limits have the same value). Alternatively you may also, more generally speaking, break the interval into n equal sized pieces with the size denoted $\Delta x=\frac{b-a}{n}$ and choose any "sample point" from each piece of the partition, denoted x_{i}^{*} where $1 \leq i \leq n$ for each piece of the partition of the interval into n pieces, and define the definite integral as

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \Delta x f\left(x_{i}^{*}\right)
$$

Use the geometric interpretation of the definite integral to find the following:
(i)

$$
\int_{1}^{3} 4 x-2 d x
$$

(ii)

$$
\int_{-3}^{3} \sqrt{9-t^{2}} d t
$$

(iii)

$$
\int_{-10}^{10} \sin (\theta) d \theta
$$

Theorem: If f is a continuous function on $[a, b]$, then we can define a function g by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

In which case g will be continuous on $[a, b]$, differentiable on (a, b) and (most importantly)

$$
g^{\prime}(x)=f(x) .
$$

Use the Fundamental Theorem of Calculus to find the derivatives of the following functions:
(i)

$$
f(x)=\int_{1}^{x} \ln (u) e^{u^{2}} d u
$$

(ii)

$$
f(x)=\int_{x}^{2} \sin (\ln (\sec (t))) d t
$$

(iii)

$$
f(x)=\int_{0}^{x^{5}} e^{t^{2}} d t
$$

(iv)

$$
f(x)=\int_{x^{2}}^{\sin (x)} e^{t^{7}} d t
$$

Theorem: If f is continuous on $[a, b]$ and F is any anti-derivative of f (i.e. $F^{\prime}=f$) then

$$
\int_{a}^{b} f(x) d x=F(a)-F(b)
$$

Evaluate the following definite integrals:

(i)

$$
\int_{0}^{\pi} \sin (x) d x
$$

(ii)

$$
\int_{0}^{1} e^{u} d u
$$

(iii)

$$
\int_{0}^{2} t^{4}+3 t^{2}+5 t+2 d t
$$

(iv)

$$
\int_{-\pi}^{-\pi / 2}-\cos (x)+\frac{1}{3 x} d x
$$

(v)

$$
\int_{1}^{3} u^{-11 / 8} d u
$$

(vi)

$$
\int_{\pi / 6}^{\pi / 3}(\sec (\theta))^{2}-2 \csc (2 \theta) \cot (2 \theta) d \theta
$$

Indefinite Integral:

Find expressions for the following indefinite integrals (don't forgot the " $+C$ "):
(i)

$$
\int \frac{2}{u} d u
$$

(ii)

$$
\int \frac{7^{x}}{3} d x
$$

(iii)

$$
\int \tan (3 t+1)+t^{-10 / 11} d t
$$

u - Substitution:

Evaluate the following integrals (definite and indefinite):
(i)

$$
\int 7 x^{-6} \cos \left(x^{-5}\right) d x
$$

(ii)

$$
\int \frac{1}{3} x^{5} e^{2 x^{6}} d x
$$

(iii)

$$
\int\left(4 x^{2}+1\right)\left(4 x^{3}+3 x\right)^{2 / 3} d x
$$

(iv)

$$
\int_{0}^{\pi / 4}(\sin (t))^{3} \cos (t) d t
$$

(v)

$$
\int_{1 / 2}^{1} \frac{\ln (2 t)}{3 t} d t
$$

(vi)

$$
\int_{0}^{\pi / 4} \sec ^{2}(\theta) \tan (\theta) d t
$$

Evaluate the following integrals (definite and indefinite):
(i)

$$
\int 3^{x} 8^{x} d x
$$

(ii)

$$
\int t \ln (t) d t
$$

(iii)

$$
\int \arcsin (x) d x
$$

(iv)

$$
\int \arctan (x) d x
$$

(v)

$$
\int_{0}^{1} t^{13} e^{4 t^{7}} d t
$$

(vi)

$$
\int_{0}^{\sqrt{\pi / 2}} 3 t^{3} \sin \left(t^{2}\right) d t
$$

(vii)

$$
\int_{\pi / 4}^{5 \pi / 4} e^{2 x} \sin (x) d x
$$

