Midterm 1 Review Sheet

List of Topics:

- Derivative Rules and Basic Derivatives
 - Chain Rule
 - Product Rule
 - Basic Derivatives: polynomials, trigonometric functions, ln(x), e^x , $x^{n/m}$
- Rectangular Approximations (Riemann Sums)
 - Left end point (L_n)
 - Right end point (R_n)
 - Midpoint (M_n)
- Definite Integral
 - $-\int_{a}^{b}f(x)\,dx$
 - Definition in term of Riemann Sums
 - Geometric Interpretation
- Fundamental Theorem of Calculus part 1
 - Statement of Theorem
 - Applications
- Fundamental Theorem of Calculus part 2
 - Statement of Theorem
 - Applications
- Indefinite Integral
 - $-\int f(x) dx$
 - Don't forgot to add "+C" to your anti-derivative
- *u* Substitution (reverse chain rule)
 - $du = \left(\frac{du}{dx}\right)dx = u'dx$
 - Recognize when to use it
 - u = the "nested" function
 - -u = the function whose derivative is sitting outside
 - You can use either x bounds on an anti-derivative written in terms of x, or use the u bounds on an anti-derivative written in terms of u.
- Integration by Parts (reverse product rule)
 - $-\int_a^b u\,dv = uv|_a^b \int_a^b v\,du$
 - Use it when either told to or when u Substitution fails
 - Remember that the "parts" (u and dv) are parts of a product
 - You have a limited number of choices for what u and dv can be, sometimes recognizing a u Substitution integral as part of the product is necessary to determine your choices for u and dv.

Representative sample of problems

Derivatives Practice:

Find the Derivative

(i)

$$f(x) = e^{x^2} \sin(\ln(x))$$

(ii)
$$f(x) = ln(tan(e^{(x^2+x)}))$$

(iii)
$$f(x) = \frac{\arcsin(\ln(x))}{e^x(x^4 - 3x^3 + x - e)}$$

(iv)
$$f(x) = ln(ln(x))e^{sin(x)} - sin(sin(sin(x)))$$

Find L_n , R_n , and M_n for the given function on the given interval: (Remember that *n* tells you how many equal sized pieces to break the interval into to use as the base of your rectangles)

(i) $f(x) = 2x^3 - x^2 + 1$ Interval: [0,3] n = 3

(ii) f(x) = sin(x) + 1/2 Interval: $[-2\pi, 2\pi]$ n = 4

(iii) f(x) = 3x + 2 Interval: [-3, -2] n = 5

The definite integral:

Definition: Let f be a continuous function on the interval [a, b]. The definite integral of f over the interval [a, b], denoted $\int_a^b f(x) dx$, is defined to be

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} L_n = \lim_{n \to \infty} R_n = \lim_{n \to \infty} M_n$$

(all of the limits have the same value). Alternatively you may also, more generally speaking, break the interval into n equal sized pieces with the size denoted $\Delta x = \frac{b-a}{n}$ and choose any "sample point" from each piece of the partition, denoted x_i^* where $1 \le i \le n$ for each piece of the partition of the interval into n pieces, and define the definite integral as

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta x f(x_{i}^{*})$$

Use the geometric interpretation of the definite integral to find the following:

(i)

$$\int_{1}^{3} 4x - 2\,dx$$

(ii)

$$\int_{-3}^{3} \sqrt{9-t^2} \, dt$$

(iii)

Fundamental Theorem of Calculus part 1:

<u>Theorem</u>: If f is a <u>continuous</u> function on [a, b], then we can define a function g by

$$g(x) = \int_{a}^{x} f(t) dt \qquad a \le x \le b$$

In which case g will be continuous on [a, b], differentiable on (a, b) and (most importantly) g'(x) = f(x).

Use the Fundamental Theorem of Calculus to find the derivatives of the following functions:

(i)

$$f(x) = \int_1^x \ln(u) e^{u^2} \, du$$

(ii)
$$f(x) = \int_{x}^{2} \sin(\ln(\sec(t))) dt$$

(iii)
$$f(x) = \int_0^{x^5} e^{t^2} dt$$

(iv)
$$f(x) = \int_{x^2}^{\sin(x)} e^{t^7} dt$$

Fundamental Theorem of Calculus part 2:

<u>Theorem</u>: If f is <u>continuous</u> on [a, b] and F is any anti-derivative of f (i.e. F' = f) then

$$\int_{a}^{b} f(x) \, dx = F(a) - F(b)$$

Evaluate the following definite integrals:

(i)
$$\int_0^{\pi} \sin(x) \, dx$$

(ii)
$$\int_0^1 e^u \, du$$

(iii)
$$\int_0^2 t^4 + 3t^2 + 5t + 2 \, dt$$

(iv)
$$\int_{-\pi}^{-\pi/2} -\cos(x) + \frac{1}{3x} \, dx$$

(v)
$$\int_{1}^{3} u^{-11/8} \, du$$

(vi)
$$\int_{\pi/6}^{\pi/3} (\sec(\theta))^2 - 2\csc(2\theta)\cot(2\theta) \, d\theta$$

Find expressions for the following indefinite integrals (don't forgot the "+C"):

(i)

$$\int \frac{2}{u} \ du$$

(ii)

$$\int \frac{7^x}{3} dx$$

(iii)

$$\int \, tan(3t+1) + t^{-10/11} \,\, dt$$

Evaluate the following integrals (definite and indefinite):

(i)
$$\int 7x^{-6}\cos(x^{-5}) dx$$
(ii)
$$\int \frac{1}{3}x^5 e^{2x^6} dx$$
(iii)
$$\int (4x^2 + 1)(4x^3 + 3x)^{2/3} dx$$
(iv)
$$\int_0^{\pi/4} (\sin(t))^3 \cos(t) dt$$
(v)

$$\int_{1/2}^{1} \frac{\ln(2t)}{3t} \, dt$$

(vi)
$$\int_{0}^{\pi/4} \sec^{2}(\theta) \tan(\theta) \ dt$$

Evaluate the following integrals (definite and indefinite):