Midterm 2 Review Sheet

List of Topics:

- Volumes/Solids of Revolution
- Typical cross sections/Infinitesimal volume elements
- Washer Method
- Cylindrical Shell Method
- Trigonometry Fundamentals
- Derivatives
- Integrals
- Identities:
* $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1 \quad \rightarrow \quad 1+\tan ^{2}(\theta)=\sec ^{2}(\theta)$
$\cot ^{2} \theta+1=\csc ^{2}(\theta)$
* $\cos (2 \theta)=\cos ^{2}(\theta)-\sin ^{2}(\theta) \quad \rightarrow \quad \sin ^{2}(\theta)=\frac{1}{2}-\frac{1}{2} \cos (2 \theta)$
$\cos ^{2}(\theta)=\frac{1}{2}+\frac{1}{2} \cos (2 \theta)$
- Trigonometric Integrals
- Finding $\int \cos ^{n}(x) \sin ^{m}(x) d x$
* At least one of m or n is odd
* Both n and m are even
- Finding $\int \sec ^{n}(x) \tan ^{m}(x) d x$
* n is even
* m is odd
- Trigonometric Substitution
- The Process:
* Spot a square-root, but it is not a u-substitution
* Determine the correct substitution ${ }^{(*)(* *)}$
* Make the substitution and don't forget $d x$
* Evaluate resulting trigonometric integral ${ }^{(* * *)}$
* Resubstitute to get the integral in terms of $x^{(* * * *)}$
- Special Considerations:
* (*) Uneven Coefficients
* (**) Completing the square
* (***) Recollecting terms into a familiar form
* (****) Triangle Trick
- Partial Fraction Decomposition
- Three possible forms:
* Distinct linear factors
* Distinct irreducible quadratics
* Repeated factors
- Handling the irreducible quadratic term (e.g. $\int \frac{x+2}{x^{2}+x+1} d x$)
* Split the numerator into a term amenable to u-substitution and a constant term
* The constant term over the irreducible quadratic is handled with $\arctan (x)$

Representative sample of problems

Volumes:
1)

Find the volume of a pyramid of height 10 with a square base of side length 20 by using infinitesimal volume elements.
2)

Let R be the region bounded by the curves $y=x^{2}$ and $x=y^{2}$. Find the volume of the solid obtained by rotating R about the x -axis using first washers then cylindrical shells. Also find the volume of the solid obtained by rotating R about the y-axis using first washers then cylindrical shells.
3)

Let R be the region in the first quadrant bounded by the curves $x=0$ and $x=\sin (\pi y)$.
(a) Find the volume of the solid obtained by rotating R about the line $y=3$.
(b) Find the volume of the solid obtained by rotating R about the line $x=-2$.
(i)

$$
\int \cos ^{2}(3 x) \sin ^{2}(3 x) d x
$$

(ii)

$$
\int \cos ^{7}(3 x) d x
$$

(iii)

$$
\int \cos ^{6}(x) \sin ^{5}(x) d x
$$

(iv)

$$
\int \tan ^{3}(x) \sec ^{3}(x) d x
$$

(v)

$$
\int \tan ^{4}(x) \sec ^{8}(x) d x
$$

(vi)

$$
\int \cot ^{5}(x) \csc ^{3}(x) d x
$$

(i)

$$
\int \frac{x^{2}}{\left(x^{2}+9\right)^{7 / 2}} d x
$$

(ii)

$$
\int \frac{x^{3}}{\left(4-2 x^{2}\right)^{5 / 2}} d x
$$

(iii)

$$
\int_{2 \sqrt{5}}^{2 \sqrt{5 / 3}} \frac{x^{3}}{\left(x^{2}-5\right)^{5 / 2}} d x
$$

1)

Write the form of the partial fraction decomposition for the following (don't bother solving for the variables A, B, C etc.)
(i)

$$
\frac{x^{2}+2 x-1}{(x-1) x^{3}}
$$

(ii)

$$
\frac{x+3}{\left(x^{2}+10\right)(x+1)^{4}}
$$

(iii)

$$
\frac{x^{3}+2}{\left(x^{2}+x+1\right)\left(x^{2}-4 x+5\right)^{3}(x+4)}
$$

2)

Evaluate the following integrals
(i)

$$
\int \frac{x^{2}-2 x-2}{x(x-1)(x-3)} d x
$$

(ii)

$$
\int \frac{3 x^{2}+2 x+3}{\left(x^{2}+1\right)(x+1)} d x
$$

(iii)

$$
\int \frac{3 x^{2}+4 x}{\left(x^{2}+2 x+2\right)(x+2)^{2}} d x
$$

