Midterm 2 Review Sheet

List of Topics:

- Volumes/Solids of Revolution
 - Typical cross sections/Infinitesimal volume elements
 - Washer Method
 - Cylindrical Shell Method
- Trigonometry Fundamentals
 - Derivatives
 - Integrals
 - Identities:

*
$$\cos^2(\theta) + \sin^2(\theta) = 1 \rightarrow 1 + \tan^2(\theta) = \sec^2(\theta)$$

 $\cot^2 \theta + 1 = \csc^2(\theta)$

*
$$\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) \longrightarrow$$

$$\sin^{2}(\theta) = \frac{1}{2} - \frac{1}{2}\cos(2\theta) \\ \cos^{2}(\theta) = \frac{1}{2} + \frac{1}{2}\cos(2\theta)$$

- Trigonometric Integrals
 - Finding $\int \cos^n(x) \sin^m(x) dx$
 - * At least one of m or n is odd
 - * Both n and m are even
 - Finding $\int \sec^n(x) \tan^m(x) dx$
 - * n is even
 - * m is odd
- Trigonometric Substitution
 - The Process:
 - * Spot a square-root, but it is not a u-substitution
 - * Determine the correct substitution $^{(*)(**)}$
 - * Make the substitution and don't forget dx
 - * Evaluate resulting trigonometric integral (***)
 - * Resubstitute to get the integral in terms of $x^{(****)}$
 - Special Considerations:
 - * (*) Uneven Coefficients
 - * (**) Completing the square
 - * (***) Recollecting terms into a familiar form
 - * (****) Triangle Trick
- Partial Fraction Decomposition
 - Three possible forms:
 - $\ast\,$ Distinct linear factors
 - * Distinct irreducible quadratics
 - * Repeated factors
 - Handling the irreducible quadratic term (e.g. $\int \frac{x+2}{x^2+x+1} dx$)
 - * Split the numerator into a term amenable to *u*-substitution and a constant term
 - * The constant term over the irreducible quadratic is handled with $\arctan(x)$

Representative sample of problems

<u>Volumes:</u>

1)

Find the volume of a pyramid of height 10 with a square base of side length 20 by using infinitesimal volume elements.

Let R be the region bounded by the curves $y = x^2$ and $x = y^2$. Find the volume of the solid obtained by rotating R about the x-axis using first washers then cylindrical shells. Also find the volume of the solid obtained by rotating R about the y-axis using first washers then cylindrical shells.

2)

3)

Let R be the region in the first quadrant bounded by the curves x = 0 and $x = \sin(\pi y)$.

(a) Find the volume of the solid obtained by rotating R about the line y = 3.

(b) Find the volume of the solid obtained by rotating R about the line x = -2.

(i) $\int \cos^2(3x) \sin^2(3x) \, dx$ (ii) $\int \cos^7(3x) \, dx$ (iii) $\int \cos^6(x) \sin^5(x) \, dx$ (iv) $\int \tan^3(x) \sec^3(x) \, dx$ (v) $\int \tan^4(x) \sec^8(x) \, dx$

 $\int \cot^5(x) \csc^3(x) \, dx$

(vi)

Trigonometric Substitution:

(i)

$$\int \frac{x^2}{(x^2+9)^{7/2}} \, dx$$

(ii)

$$\int \frac{x^3}{(4-2x^2)^{5/2}} \, dx$$

(iii)

$$\int_{2\sqrt{5}}^{2\sqrt{5/3}} \frac{x^3}{(x^2-5)^{5/2}} \, dx$$

Partial Fraction Decomposition:

1)

Write the form of the partial fraction decomposition for the following (don't bother solving for the variables A, B, C etc.)

(i)

$$\frac{x^2 + 2x - 1}{(x - 1)x^3}$$

(ii)

$$\frac{x+3}{(x^2+10)(x+1)^4}$$

(iii)

$$\frac{x^3+2}{(x^2+x+1)(x^2-4x+5)^3(x+4)}$$

2)

Evaluate the following integrals

(i)

$$\int \frac{x^2 - 2x - 2}{x(x - 1)(x - 3)} \, dx$$

(ii)

$$\int \frac{3x^2 + 2x + 3}{(x^2 + 1)(x + 1)} \, dx$$

(iii)

$$\int \frac{3x^2 + 4x}{(x^2 + 2x + 2)(x + 2)^2} \, dx$$