This problem concerns the area under the curve $y=\sqrt{1-x^{2}}$ that forms half of the unit circle $x^{2}+y^{2}=1$.

1. First, let's try to figure out the area that gives the definite integral $\int_{0}^{0.5} \sqrt{1-x^{2}} d x$. Sketch this area and try to use geometry to calculate it. You should get an answer of the form $a+b \pi$, where a and b are constants that you must find. Some hints follow:

- Split the area into two pieces: a triangle and a wedge of the unit circle (like a slice of pie) and calculate the two parts separately.
- For the wedge of the circle, what proportion of the whole circle is it? You need the angle formed between the diagonal and the positive y-axis.
- To determine the angle, remember your unit circle trig!

2. Now let's switch our focus to the area function $A(x)=\int_{0}^{x} \sqrt{1-t^{2}} d t$. In a similar way to the work you did in (1), use geometry to find an expression for $A(x)$.
3. Check the Fundamental Theorem of Calculus (part 1) holds for your answer in (2).
