Math 2 - Practice "Exam" 1

This is a practice "exam" in the sense that this is not intended to be completed in two hours. This is merely a collection of problems that I've cobbled together to give you a sense of what you could realistically expect to show up on the exam.

1 Section 5.1 - Areas and Distances

1. (a) Estimate the area under the graph of $f(x)=\sqrt{x}$ from $x=0$ to $x=4$ using four rectangles with the left endpoint method.
(b) Is this an overestimate or underestimate?
(c) What property of the function $f(x)$ allows us to make the claim from part (b)?

2 Section 5.2 - The Definite Integral

2. Given that $\int_{0}^{\pi} \sin ^{2} x \mathrm{~d} x=\frac{\pi}{2}$, compute $\int_{0}^{\pi}\left(4 \sin ^{2} t+7\right) \mathrm{d} t$.
3. Use geometry to evaluate the definite integral $\int_{2}^{5}(4-2 x) \mathrm{d} x$.
4. Use geometry to evaluate the definite integral $\int_{2}^{10}|x-5| \mathrm{d} x$.
5. If $\int_{0}^{9} f(x) \mathrm{d} x=37$ and $\int_{0}^{9} g(x) \mathrm{d} x=16$, find $\int_{0}^{9}(2 f(x)+3 g(x)) \mathrm{d} x$.

3 Section 5.3 - Fundamental Theorem of Calculus

6. (a) State the First Fundamental Theorem of Calculus.
(b) Interpret the First Fundamental Theorem of Calculus in terms of antiderivatives and derivatives of a function.
(c) State the Second Fundamental Theorem of Calculus.
(d) Interpret the Second Fundamental Theorem of Calculus in terms of geometry.
7. Use the Chain Rule to evaluate $\frac{\mathrm{d}}{\mathrm{d} x} \int_{0}^{x^{2}} e^{t} \mathrm{~d} t$.
8. Evaluate the following integrals:
(a) $\int_{1}^{8} x^{-2 / 3} \mathrm{~d} x$
(b) $\int_{0}^{4}(4-t) \sqrt{t} \mathrm{~d} t$
(c) $\int_{1}^{9} \sqrt{\frac{3}{z}} \mathrm{~d} z$
9. Given $F(x)=\int_{x}^{0} \frac{e^{t}}{t} \mathrm{~d} t$, find $F^{\prime}(x)$.

4 Section 5.4 - The Indefinite Integral

10. Find the most general antiderivative $F(x)$ of $f(x)=x^{2}-x^{-2}$.
11. Verify with derivatives that $\int \cos ^{3} x \mathrm{~d} x=\sin x-\frac{1}{3} \sin ^{3} x+C$.
12. Evaluate the following indefinite integrals:
(a) $\int\left(1+\tan ^{2} u\right) \mathrm{d} u$
(b) $\int \frac{x^{3}-2 \sqrt{x}}{x} \mathrm{~d} x$
(c) $\int \frac{t^{4}-1}{t^{2}-1} \mathrm{~d} t$.

5 Section 5.5 - The Substitution Rule
13. Evaluate the following indefinite integrals:
(a) $\int \frac{e^{u}}{\left(1-e^{u}\right)^{2}} \mathrm{~d} u$
(b) $\int \sqrt{x} \sin \left(1+x^{3 / 2}\right) \mathrm{d} x$
(c) $\int x \cos \left(x^{2}\right) \sin \left(x^{2}\right) \mathrm{d} x$.
14. Evaluate the following definite integrals:
(a) $\int_{0}^{1} \cos \left(\frac{\pi t}{2}\right) \mathrm{d} t$
(b) $\int_{0}^{1}(3 t-1)^{50} \mathrm{~d} t$
(c) $\int_{0}^{3} \frac{1}{5 x+1} \mathrm{~d} x$.

6 Section 6.1 - Areas Between Curves

15. Compute the area bounded by $y=|x|$ and $y=x^{2}-2$.
16. Compute the area bounded by $y=x^{2}$ and $y=4 x-x^{2}$.
17. Compute the area bounded by $y=\sqrt{x+2}$ and $y=\frac{1}{x+1}$ between $x=0$ and $x=2$.

7 Section 6.2 - Volumes

18. Set up the integral-but do not solve - to find the volume of the solid obtained by rotating the region bounded by $y=e^{-x^{2}}, y=0, x=-1$, and $x=1$ about the x-axis.
19. Compute the volume of the solid obtained by rotating the region bounded by $y=x^{2}$ and $y=\sqrt{x}$ about the line $y=1$.
20. Compute the volume of the solid obtained by rotating the region bounded by $y=x^{3}$, $y=0, x=1$ about the line $x=2$.
