Midterm 2 Review

Section 6.1 - Areas Between Curves

- 1. Find the area of the region enclosed by the following curves:
 - (a) $y = e^x$, $y = x^2 1$, x = -1, x = 1
 - (b) $y = \sin x, y = x, x = \pi/2, x = \pi$
 - (c) $y = 1/x, y = 1/x^2, x = 2$
 - (d) $x = 2y^2, x = 4 + y^2$
 - (e) $y = \sqrt{x}, y = \frac{1}{2}x, x = 9$

Section 6.2/6.3 - Volumes

1. Find the volume of the following using the disk/washer method.

- (a) The region enclosed by $y = x^{1/3}$, y = 0, x = 1 rotated about the y-axis.
- (b) The region enclosed by $y = x^3$, y = 8, x = 0 rotated about the x-axis.
- (c) The region enclosed by $y = \sqrt{x}$, x = 0, y = 2 rotated about the x-axis.
- (d) The region enclosed by $y = x^2$, $x = y^2$ rotated about the line y = 1.
- (e) The region enclosed by xy = 1, y = 0, x = 1, x = 2 rotated about the line x = -1.
- (f) Find the volume of a sphere of radius r.
- (g) Find the volume of a cap of a sphere where the radius of the sphere is r and the height of the cap portion is h.
- 2. Find the volume of the following using the cylindrical shells method.
 - (a) The region enclosed by $y = x^{1/3}$, y = 0, x = 1 rotated about the y-axis.
 - (b) The region enclosed by $y = \sqrt{x}$, x = 0, y = 2 rotated about the x-axis.
 - (c) The region enclosed by xy = 1, x = 0, y = 1, y = 3 rotated about the x-axis.
 - (d) The region enclosed by $y = x^3$, y = 0, x = 1, x = 2 rotated about the y-axis.
 - (e) The region enclosed by e^{-x^2} , y = 0, x = 0, x = 1 rotated about the y-axis.
 - (f) Find the volume of a sphere of radues r.

3. First decide what method you would use to find the volume of the following and then do it.

- (a) The region enclosed by $y = 4x x^2$, y = x rotated about the y-axis.
- (b) The region enclosed by $y = \ln x$, y = 1, y = 2, x = 0 rotated about the y-axis.
- (c) The region enclosed by $y + x^2 = 1$, y = 0 rotated about the x-axis.
- (d) The region enclosed by $y = x^2$, $y = 6x 2x^2$ rotated about the y-axis.
- (e) The region enclosed by $y = \sqrt{25 x^2}$, y = 0, x = 2, x = 4 rotated about the x-axis.
- (f) The region enclosed by $x = 4y^2 y^3$, x = 0, rotated about the x-axis.

6.5 - Average Value of a Function

1. Find the average value of the function on the given interval:

- (a) $f(x) = \sec^2(x/2), [0, \pi/2]$ (b) $f(x) = x \cdot \sin x, [0, \pi/2]$ (c) $f(x) = x \cdot \sin x, [0, \pi/2]$
- (b) $f(x) = \sin x \sin 2x$, $[0, \pi]$ (d) $g(x) = \tan^3 x \sec x$, $[0, \pi/4]$
- 7.1 Integration by Parts
- 1. Use Integration by Parts to evaluate the following integrals:

(a)
$$\int t \cdot e^{-3t} dt$$

(b) $\int t^2 \cdot \sin 3t dt$
(c) $\int e^x \cdot \cos x dx$
(d) $\int \frac{\ln y}{\sqrt{y}} dy$
(e) $\int \sin^{-1} x dx$

7.2 - Trigonometric Integrals

1. Use trig integral techniques to evaluate the following:

(a)
$$\int \sin^2 x \cos^3 x \, dx$$

(b)
$$\int_0^{\pi/2} \sin^7 \theta \cos^5 \theta \, d\theta$$

(c)
$$\int \sin^2(\pi x) \cos^5(\pi x) \, dx$$

(d)
$$\int \tan 5x \sec^3 5x \, dx$$

(e)
$$\int_0^{\pi/4} \tan^4 t \, dt$$

(f)
$$\int_0^{\pi/4} \sec^4 \theta \tan^4 \theta \, d\theta$$

(g)
$$\int_{\pi/4}^{\pi/2} \cot^5 \theta \csc^3 \theta \, d\theta$$

7.3 - Trigonometric Substitution

1. Use Trig sub to compute the following integrals:

(a)
$$\int \frac{dx}{x^2\sqrt{5-x^2}}$$

(b) $\int_0^3 \frac{x}{\sqrt{36-x^2}} dx$
(c) $\int_0^1 x^3 \cdot \sqrt{4-x^2} dx$
(d) $\int \frac{dt}{t^2\sqrt{t^2-16}}$
(e) $\int \frac{t^5}{\sqrt{t^2+2}} dt$

Integrals

1. Decide what integration method you should use to evaluate the following integrals, then do it.

(a)
$$\int \cos x (1 + \sin^2 x) \, dx$$

(b)
$$\int \frac{x^3}{\sqrt{1 + x^2}} \, dx$$

(c)
$$\int_1^3 r^4 \cdot \ln r \, dr$$

(d)
$$\int \sin^5 t \cdot \cos^4 t \, dt$$

(e)
$$\int \frac{e^{\sqrt{t}}}{\sqrt{t}} \, dt$$

(f)
$$\int \tan^3 \theta \sec^2 \theta \, d\theta$$

(g)
$$\int_0^{\pi/2} \frac{\sin^2 \theta \cdot \cot \theta}{\sec \theta} \, d\theta$$

(h)
$$\int \cos x \cdot \cos^3(\sin x) \, dx$$

(i)
$$\int \frac{x^2}{\sqrt{1 - x^2}} \, dx \text{ (NOT on midterm)}$$

(j)
$$\int x^3 \cdot e^x \, dx$$

(k)
$$\int e^x \cdot \sin x \, dx$$

(l)
$$\int \frac{\ln x}{x\sqrt{1 + (\ln x)^2}} \, dx$$