Midterm 2 Review

Section 6.1 - Areas Between Curves

1. Find the area of the region enclosed by the following curves:
(a) $y=e^{x}, y=x^{2}-1, x=-1, x=1$
(b) $y=\sin x, y=x, x=\pi / 2, x=\pi$
(c) $y=1 / x, y=1 / x^{2}, x=2$
(d) $x=2 y^{2}, x=4+y^{2}$
(e) $y=\sqrt{x}, y=\frac{1}{2} x, x=9$

Section 6.2/6.3 - Volumes

1. Find the volume of the following using the disk/washer method.
(a) The region enclosed by $y=x^{1 / 3}, y=0, x=1$ rotated about the y-axis.
(b) The region enclosed by $y=x^{3}, y=8, x=0$ rotated about the x-axis.
(c) The region enclosed by $y=\sqrt{x}, x=0, y=2$ rotated about the x-axis.
(d) The region enclosed by $y=x^{2}, x=y^{2}$ rotated about the line $y=1$.
(e) The region enclosed by $x y=1, y=0, x=1, x=2$ rotated about the line $x=-1$.
(f) Find the volume of a sphere of radius r.
(g) Find the volume of a cap of a sphere where the radius of the sphere is r and the height of the cap portion is h.
2. Find the volume of the following using the cylindrical shells method.
(a) The region enclosed by $y=x^{1 / 3}, y=0, x=1$ rotated about the y-axis.
(b) The region enclosed by $y=\sqrt{x}, x=0, y=2$ rotated about the x-axis.
(c) The region enclosed by $x y=1, x=0, y=1, y=3$ rotated about the x-axis.
(d) The region enclosed by $y=x^{3}, y=0, x=1, x=2$ rotated about the y-axis.
(e) The region enclosed by $e^{-x^{2}}, y=0, x=0, x=1$ rotated about the y-axis.
(f) Find the volume of a sphere of radues r.
3. First decide what method you would use to find the volume of the following and then do it.
(a) The region enclosed by $y=4 x-x^{2}, y=x$ rotated about the y-axis.
(b) The region enclosed by $y=\ln x, y=1, y=2, x=0$ rotated about the y-axis.
(c) The region enclosed by $y+x^{2}=1, y=0$ rotated about the x-axis.
(d) The region enclosed by $y=x^{2}, y=6 x-2 x^{2}$ rotated about the y-axis.
(e) The region enclosed by $y=\sqrt{25-x^{2}}, y=0, x=2, x=4$ rotated about the x-axis.
(f) The region enclosed by $x=4 y^{2}-y^{3}, x=0$, rotated about the x-axis.

6.5 - Average Value of a Function

1. Find the average value of the function on the given interval:
(a) $f(x)=\sec ^{2}(x / 2),[0, \pi / 2]$
(c) $f(x)=x \cdot \sin x,[0, \pi / 2]$
(b) $f(x)=\sin x-\sin 2 x,[0, \pi]$
(d) $g(x)=\tan ^{3} x \sec x,[0, \pi / 4]$

7.1 - Integration by Parts

1. Use Integration by Parts to evaluate the following integrals:
(a) $\int t \cdot e^{-3 t} d t$
(c) $\int e^{x} \cdot \cos x d x$
(d) $\int \frac{\ln y}{\sqrt{y}} d y$
(b) $\int t^{2} \cdot \sin 3 t d t$
(e) $\int \sin ^{-1} x d x$

7.2 - Trigonometric Integrals

1. Use trig integral techniques to evaluate the following:
(a) $\int \sin ^{2} x \cos ^{3} x d x$
(e) $\int_{0}^{\pi / 4} \tan ^{4} t d t$
(b) $\int_{0}^{\pi / 2} \sin ^{7} \theta \cos ^{5} \theta d \theta$
(f) $\int_{0}^{\pi / 4} \sec ^{4} \theta \tan ^{4} \theta d \theta$
(c) $\int \sin ^{2}(\pi x) \cos ^{5}(\pi x) d x$
(g) $\int_{\pi / 4}^{\pi / 2} \cot ^{5} \theta \csc ^{3} \theta d \theta$
(d) $\int \tan 5 x \sec ^{3} 5 x d x$

7.3 - Trigonometric Substitution

1. Use Trig sub to compute the following integrals:
(a) $\int \frac{d x}{x^{2} \sqrt{5-x^{2}}}$
(c) $\int_{0}^{1} x^{3} \cdot \sqrt{4-x^{2}} d x$
(d) $\int \frac{d t}{t^{2} \sqrt{t^{2}-16}}$
(b) $\int_{0}^{3} \frac{x}{\sqrt{36-x^{2}}} d x$
(e) $\int \frac{t^{5}}{\sqrt{t^{2}+2}} d t$

Integrals

1. Decide what integration method you should use to evaluate the following integrals, then do it.
(a) $\int \cos x\left(1+\sin ^{2} x\right) d x$
(g) $\int_{0}^{\pi / 2} \frac{\sin ^{2} \theta \cdot \cot \theta}{\sec \theta} d \theta$
(b) $\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$
(h) $\int \cos x \cdot \cos ^{3}(\sin x) d x$
(c) $\int_{1}^{3} r^{4} \cdot \ln r d r$
(i) $\int \frac{x^{2}}{\sqrt{1-x^{2}}} d x$ (NOT on midterm)
(d) $\int \sin ^{5} t \cdot \cos ^{4} t d t$
(j) $\int x^{3} \cdot e^{x} d x$
(e) $\int \frac{e^{\sqrt{t}}}{\sqrt{t}} d t$
(k) $\int e^{x} \cdot \sin x d x$
(f) $\int \tan ^{3} \theta \sec ^{2} \theta d \theta$
(1) $\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x$
