## Practice Exam 1

This is intended to closely resemble the actual exam in terms of difficulty of questions, however it is somewhere between 1.5 and 2 exams in length. Doing these problems is most likely not enough to prepare yourself for the exam. Studying your homework, the quizzes, and the Chapter 5 Review in the textbook first, and then using this exam as a way to test yourself is a good idea. You should not need a calculator for these problems, and they will not be allowed during the exam.

1. TRUE or FALSE. Mark each statement as TRUE or FALSE. These will not be given partial credit.
(a) If $f$ is continuous on $[a, b]$, then $\int_{a}^{b} x f(x) d x=x \int_{a}^{b} f(x) d x$.
(b) If $f$ and $g$ are continuous on $[a, b]$, then $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$.
(c) If $h$ is a continuous function, $\int_{-3}^{5} h(x) d x=12$, and $\int_{2}^{5} h(x) d x=-4$, then we know $\int_{-3}^{2} h(x) d x=16$.
(d) If $f$ is a continuous function, then

$$
\frac{d}{d x} \int_{-x}^{x} f(t) d t=\frac{d}{d x}\left(\int_{0}^{x} f(t) d t x-\int_{0}^{-x} f(t) d t\right)=f(x)+f(-x)
$$

2. Complete the table below with the indefinite integral of each function. (You should know all of these, but if you need help there is a table on page 392.)

| $\int c f(x) d x$ |  | $\int k d x$ |  |
| :---: | :--- | :---: | :---: |
| $\int x^{n} d x x \neq-1$ |  | $\int \frac{1}{x} d x$ |  |
| $\int e^{x} d x$ |  | $\int a^{x} d x$ |  |
| $\int \sin x d x$ |  | $\int \cos x d x$ |  |
| $\int \sec ^{2} x d x$ |  | $\int \csc ^{2} x d x$ |  |
| $\int \sec x \tan x d x$ |  | $\int \csc x \cot x d x$ |  |
| $\int \frac{1}{x^{2}+1} d x$ |  | $\int \frac{1}{\sqrt{1-x^{2}}} d x$ |  |

3. Compute the following integral in three ways:

$$
\int_{-2}^{2} 2 x-1 d x
$$

(a) Use the definition of a definite integral as the limit of a Riemann Sum.
(b) Use geometry and the fact that a definite integral represents a net area.
(c) Use the second part of the Fundamental Theorem of Calculus.
4. Find the derivative of the function $g(x)$ in two ways:

$$
g(x)=\int_{0}^{3 \sqrt{x}} t^{2}+1 d t
$$

(a) Use Part 1 of the Fundamental Theorem to find $g^{\prime}(x)$.
(b) Use Part 2 of the Fundamental Theorem to evaluate the definite integral, $\int_{0}^{3 \sqrt{x}} t^{2}+$ $1 d t$, then take its derivative.
5. Compute the following integrals.
(a) $\int_{1}^{4} \sqrt{x^{3}} d x$
(b) $\int 2^{x} d x$
(c) $\int_{1}^{5} \frac{3}{x} d x$
(d) $\int 7 t \cos \left(t^{2}\right) d t$
(e) $\int_{-\frac{\pi}{4}}^{\frac{\pi}{3}} \sec ^{2} \theta d \theta$
(f) $\int x^{3} \sqrt{1+x^{4}} d x$
(g) $\int_{1}^{2} \frac{e \sqrt{y}}{\sqrt{y}} d y$
(h) $\int \cos \theta e^{\sin \theta} d \theta$
6. Using the terms we've learned so far, explain in a short paragraph the relationship between the following ideas as they apply to the motion of a particle moving along a straight line:

- DISTANCE TRAVELED, or TOTAL DISTANCE
- ACCELERATION
- VELOCITY
- SPEED
- DISPLACEMENT, or NET DISTANCE

7. A ball is thrown straight up, from the edge of a cliff 40 feet high, at $25 \mathrm{ft} / \mathrm{sec}$, and the acceleration of gravity is $32 \mathrm{ft} / \mathrm{sec}^{2}$ downwards, i.e. $-32 \mathrm{ft} / \mathrm{sec}^{2}$. Find
(a) the velocity function,
(b) the speed function,
(c) total distance function,
(d) displacement, or net distance, function,
(e) how long the ball is in the air,
(f) when it reaches its max,
(g) how high this is, (the max height),
(h) and how fast it's going when it hits the ground.
