NAME: \qquad

Math 2 Exam 2

February 21, 2008

Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- Print your name clearly in the space provided.
- You may not use a calculator.

Honor Statement:

I have neither given nor received help on this exam, and all of the answers are my own.

Question	Points	Score
1	20	
2	20	
3	20	
4	10	
5	10	
6	10	
7	10	
8	0	
Total:	100	

1. [20 points] Find the area of the region in the plane bounded by the graphs of $y=2 x+1$ and $y=2 x^{3}+1$.
(Hint: This region has two parts.)
2. (a) [10 points] Find the average value of $f(x)=\frac{1}{x}$ on the interval $[2,6]$.
(b) [10 points] For what number(s) c in this interval is the average value you just found actually attained, i.e. $f(c)=f_{\text {ave }}$?
3. [20 points] Suppose that it takes a force of 10 pounds to hold a certain spring 6 inches past its natural length. How much work, in foot-pounds, is required to stretch this spring from its natural length to 2 feet past its natural length?
(Hint: By Hookes Law, the force it takes to hold a spring stretched a distance x past its natural length is proportional to x.)
4. [10 points] Find the volume of a solid sphere of radius r. Your answer should be in terms of r.
(Hint: This is the solid of revolution obtained by revolving the region between $y=0$ and $y=\sqrt{r^{2}-x^{2}}$ about the x-axis.)
5. Find the volume of the solid of revolution obtained by revolving the region between the graphs of $y=3 x$ and $y=3 \sqrt{x}$ about the x-axis. Do so in two ways, to hopefully arrive at the same answer.
(a) [5 points] Use washers:
(b) [5 points] Use shells:
6. Find the volume of the solid of revolution obtained by revolving the same region in $\# 5$, but now about the y-axis. Do so in two ways, hopefully arriving at the same answer, which is, however, smaller than your answer to \#5.
(a) [5 points] Use washers:
(b) [5 points] Use shells:
7. [10 points] Use a method of your choice to find the volume of the solid of revolution obtained by revolving the region between the curves $y=3 x \sin \left(x^{3}\right)+5, y=0, x=0$, and $x=\sqrt[3]{\pi}$, about the y-axis.

8. Bonus Problems (4 points each)

(a) What theorem guarantees that at least one such number c exists in 2(b)? Write down this theorem, including all the hypotheses, and also prove it, using the mean value theorem for derivatives and the Fundamental Theorem of Calculus.
(b) Let $f(t)=t \sin \left(t^{2}\right)$, and let $g(x)$ be the average value of $f(t)$ from $t=0$ to $t=x$. What is $g^{\prime}(x)$? Your answer should be in terms of x only.

