Name and SECTION:
Instructor's Name:

1. Compute the following definite integrals and for each one of them check by taking the derivative.
(a)

$$
F(x)=\int \cos (10 x) d x
$$

(b)

$$
F(x)=\int e^{\sin x} \cos (x) d x
$$

(c)

$$
F(x)=\int x^{2} \sin \left(x^{3}\right) d x
$$

(d)

$$
F(x)=\int e^{e^{x}} e^{x} d x
$$

(e)

$$
F(x)=\int \frac{-2 x}{\sqrt{1-x^{2}}} d x
$$

2. Find (and check) the following indefinite integral:

$$
F(x)=\int \cos ^{3}(x) d x
$$

Hint: Use the equality $\cos ^{2}(x)=1-\sin ^{2}(x)$ and apply the substitution $u=\sin (x)$.
3. Find (and check) the following indefinite integral:

$$
F(x)=\int \cos ^{5}(x) d x
$$

4. Compute the following indefinite integral:

$$
F(x)=\int \sqrt{1-x^{2}} d x
$$

(a) Apply the substitution $\sin (\theta)=x$ and using the fact that $\sin ^{2}(\theta)+\cos ^{2}(\theta)=1$ simplify the previous equation
(b) Using the trigonometric equality

$$
\cos ^{2}(\theta)=\frac{1+\cos (2 \theta)}{2}
$$

integrate the expression you found in the previous question
(c) Substitute back in your expression $\sin ^{-1}(x)=\theta$ and write down the indefinite integral of the function you started with
Hint: Remember that $\cos (\theta)=\sqrt{1-\sin ^{2}(\theta)}$
(d) Check that what you have found in the last question is right by taking the derivative.

Are you now convinced that substitution rules are important?

