Name and SEction:
Instructor's Name:

1. Draw the graph of the function $f(t)=2 t-t^{2}$ below:

2. Knowing that

$$
\int_{a}^{b} t d t=\frac{b^{2}-a^{2}}{2} \quad \text { and } \quad \int_{a}^{b} t^{2} d t=\frac{b^{3}-a^{3}}{3}
$$

for $x \geq 1$, compute the following integral

$$
A(x)=\int_{1}^{x}\left(2 t-t^{2}\right) d t
$$

that is, find an expression for $A(x)$ that does not involve the definite integral.
3. Now that you have computed an expression for $A(x)$, compute the derivative $A^{\prime}(x)$. Is there anything worth noticing about it?
4. You can think of the value $A(x)$ as the area related to a certain region of the graph. Draw and sketch, on your figure, this region and the region whose area corresponds to $A(x+h)-A(x)$ (pick an x in between 1 and 2 but think of it as a variable).
5. Approximate this region using a rectangle. Compute the area of this rectangle and argue that

$$
A(x+h)-A(x) \approx\left(2 x-x^{2}\right) h
$$

6. How does this explain what you have noticed in question 3 ?
