NAME AND SEction: \qquad
Instructor's Name: \qquad

Math 2 Midterm 1

January 29, 2007

Instructions: This is a closed book, closed notes exam. You are not allowed to provide or receive help from any outside source during the exam.

- Print your name, section number and instructor in the space provided.
- No calculators are allowed.
- You must show your work to receive full credit.

Honor Statement:
I have neither given nor received help on this exam, and all of the answers are my own.

Question	Points	Score
1	24	
2	30	
3	10	
4	10	
5	8	
6	8	
7	8	
8	8	
9	22	
10	10	
11	12	
12	0	
Total:	150	

1. Find the derivatives of the following functions:
(a) [4 points]

$$
f(x)=\ln (x+7)
$$

(b) [6 points]

$$
f(x)=\ln (x+7) e^{x}
$$

(c) $[4$ points $]$

$$
f(x)=\sqrt{x}
$$

(d) $[6$ points $]$

$$
f(x)=\cos (\sqrt{x})
$$

(e) [4 points]

$$
f(x)=\arctan (x)
$$

2. Find all the antiderivatives of the following functions:
(a) $[6$ points $]$

$$
f(x)=e^{x}+\cos (x)
$$

(b) [6 points]

$$
f(x)=\frac{4}{1+x^{2}}
$$

(c) $[6$ points $]$

$$
f(x)=x^{3}+2 x-8
$$

(d) [6 points]

$$
f(x)=3 x^{7 / 2}-x^{3}+\sqrt{x}-7 x^{-9 / 2}
$$

(e) [6 points]

$$
f(x)=\left(x+\frac{1}{x}\right)^{2}
$$

3. [10 points] Find an expression for the function

$$
F(x)=\int_{0}^{x}\left(t^{2}+\sin t\right) d t
$$

that does not involve the definite integral.
4. Suppose the velocity of a car is given by

$$
v(t)=(10 t+4) \mathrm{ft} / \mathrm{s}
$$

(a) [4 points] Find the acceleration of the car at any time t.
(b) [6 points] How far has the car travelled after $10 s$?
5. [8 points] Evaluate

$$
\int_{-1}^{5}|x-2| d x
$$

by interpreting the integral in terms of area.
6. [8 points] Suppose $f^{\prime \prime}(x)=\cos (x), f(0)=0$ and $f^{\prime}(0)=1$. Find $f(x)$.
7. [8 points] Approximate the area under $f(x)=x^{3}-x$ between $x=1$ and $x=3$ using 4 rectangles and left endpoints.
8. [8 points] Approximate the area under $f(x)=\sin x$ between $x=0$ and $x=\pi$ using 4 rectangles and right endpoints.
9. Let $f(x)=x$.
(a) [6 points] Approximate the area under $f(x)$ between $x=0$ and $x=1$ using n rectangles and right endpoints (i.e. find an expression for R_{n}). For this part, write the answer out longhand.
(b) [5 points] Write the expression for R_{n} in Σ notation.
(c) $[6$ points $]$ Using the fact that $1+2+\cdots+(n-1)+n=\frac{n(n+1)}{2}$ find a simpler expression for R_{n}.
(d) [5 points] Using the answers to the above parts, find the area under $f(x)=x$ between $x=0$ and $x=1$.
10. [10 points] Find an expression for

$$
\frac{d}{d x} \int_{1}^{x^{2}+2 x} \frac{1}{2 \sqrt{t^{3}+1}} d t
$$

that does not involve the definite integral.
11. [12 points] Given the function $f(x)$ whose graph is drawn below

circle the graph corresponding to one of the antiderivatives of $f(x)$

(c)

(b)

(d)

Extra credit questions

12. Consider the function $f(t)=\arctan (t)$ graphed below

(a) Shade on the figure the region corresponding to the following definite integral

$$
g(x)=\int_{-1}^{x} \arctan (t) d t
$$

(b) Compute the exact value $g(1)$ justifying all your steps

