MATH 2
 PROBLEM OF THE WEEK 7

Due Friday, Feburary 21st, 2003 before the quiz.
Please show all your work!

Name:
The book shows the formula:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

but doesn't prove it. By answering the following questions, you'll prove it.
(1) Show that

$$
\sum_{i=1}^{n}(i+1)^{3}-i^{3}=(n+1)^{3}-1^{3} .
$$

(2) Show that

$$
(i+1)^{3}-i^{3}=3 i^{2}+3 i+1
$$

and conclude that

$$
\sum_{i=1}^{n}(i+1)^{3}-i^{3}=\sum_{i=1}^{n} 3 i^{2}+3 i+1 .
$$

(3) Show that

$$
\sum_{i=1}^{n} 3 i^{2}+3 i+1=3 \sum_{i=1}^{n} i^{2}+\frac{3 n(n+1)}{2}+n
$$

(4) Solve for $\sum_{i=1}^{n} i^{2}$ in

$$
(n+1)^{3}-1^{3}=3 \sum_{i=1}^{n} i^{2}+\frac{3 n(n+1)}{2}+n
$$

(5) Find a common denominator in your previous answer and show the theorem by multiplying out the right hand side of

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

and seeing the two quantities are equal.

