Math 29: Homework 5

Due Wednesday, May 10

1. (c.e. \Leftrightarrow below K_{0}) Exercise 7.1.6.
2. This question is about all subsets of \mathbb{N}. Computability plays no part here. For subsets A and B of \mathbb{N}, let $A \subseteq^{*} B$ if $A \backslash B$ is finite. Let $A \equiv_{f d} B$ if $A \subseteq^{*} B$ and $B \subseteq^{*} A$. Write $[A]=\left\{X \subseteq \mathbb{N}: A \equiv_{f d} X\right\}$. Let $[A] \leq_{f d}[B]$ if and only if $A \subseteq^{*} B$.
(a) Show that \subseteq^{*} is reflexive and transitive.
(b) Show that $\equiv_{f d}$ is an equivalence relation.
(c) Is $\{[A]: A \subseteq \mathbb{N}\}$ a Boolean algebra? Justify your answer.
(d) Show that for any $[A] \neq[\mathbb{N}]$ there is a set B with $[A]<_{f d}[B]<_{f d}[\mathbb{N}]$.
3. (computable sets are bottom) Exercise 7.2.14.
4. (lattice of c.e. degrees) Exercise 7.2.18.
5. (join in m-degree) Exercise 7.2.19.
