Math 29: Homework 5

Due Wednesday, May 10

- 1. (c.e. \Leftrightarrow below K_0) Exercise 7.1.6.
- 2. This question is about <u>all</u> subsets of \mathbb{N} . Computability plays no part here. For subsets A and B of \mathbb{N} , let $A \subseteq^* B$ if $A \setminus B$ is finite. Let $A \equiv_{fd} B$ if $A \subseteq^* B$ and $B \subseteq^* A$. Write $[A] = \{X \subseteq \mathbb{N} : A \equiv_{fd} X\}$. Let $[A] \leq_{fd} [B]$ if and only if $A \subseteq^* B$.
 - (a) Show that \subseteq^* is reflexive and transitive.
 - (b) Show that \equiv_{fd} is an equivalence relation.
 - (c) Is $\{[A] : A \subseteq \mathbb{N}\}$ a Boolean algebra? Justify your answer.
 - (d) Show that for any $[A] \neq [\mathbb{N}]$ there is a set B with $[A] <_{fd} [B] <_{fd} [\mathbb{N}]$.
- 3. (computable sets are bottom) Exercise 7.2.14.
- 4. (lattice of c.e. degrees) Exercise 7.2.18.
- 5. (join in m-degree) Exercise 7.2.19.