Primitive recursion is URM-computable

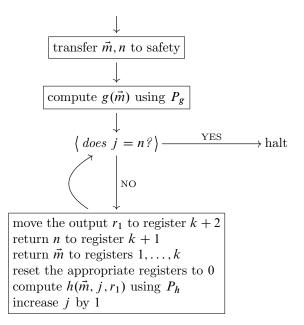
Let P_g compute $g(\vec{m})$ and P_h compute $h(\vec{m}, n, p)$, where \vec{m} is of fixed length $k \ge 0$. We want a program P_f that computes the function f defined by

$$f(\vec{m}, 0) = g(\vec{m}),$$

$$f(\vec{m}, n + 1) = h(\vec{m}, n, f(\vec{m}, n))$$

Let ρ be the largest register referred to by P_g or P_h . We need to preserve the input (\vec{m}, n) of f, so we will store those in registers $\rho + 1, \ldots, \rho + k + 1$. We also need to keep track of how many times we have done the recursive step defined by h; let's call this number j and store it in register $\rho + k + 2$. Note that initially j = 0, which is what we want.

Here's the idea:



We can achieve this with the following program (which may not be optimal):

(1) $T(1, \rho + 1)$ ÷ $T(k+1, \rho+k+1)$ (k+1)(k+2)Z(k+1) $(k+3)\cdots(k+3+\ell(P_g))$ P_g $J(\rho+k+1, \rho+k+2, k+\rho+8+\ell(P_g)+\ell(P_h))$ $(k+4+\ell(P_g))$ $(k+5+\ell(P_g))$ T(1, k+2) $(k+6+\ell(P_g))$ $T(\rho + k + 1, k + 1)$ $(2k+6+\ell(P_g))$ $T(\rho + 1, 1)$ $(2k+7+\ell(P_g))\cdots(k+\rho+5+\ell(P_g))$ $Z[k+3,\rho]$ $(k + \rho + 5 + \ell(P_g) + 1) \cdots (k + 5 + \rho + \ell(P_g) + \ell(P_h))$ P_h $S(\rho+k+2)$ $(k+\rho+6+\ell(P_g)+\ell(P_h))$ $(k+\rho+7+\ell(P_g)+\ell(P_h))$ $J(1, 1, k+4+\ell(P_g))$

Thus, we use $k + \rho + 7$ additional steps beyond the lengths of P_g and P_h . This shows that the URM-computable functions are closed under the primitive recursion scheme.