Primitive recursion is URM-computable

Let P, compute g(m) and Pj compute h(m,n, p), where m is of fixed length k > 0. We want a
program Pr that computes the function f defined by

£1,0) = g,
fGn,n+ 1) = h(m,n, f(m,n)).
Let p be the largest register referred to by Pg or Pp. We need to preserve the input (m,n) of f,
so we will store those in registers p 4+ 1,...,p 4+ k + 1. We also need to keep track of how many

times we have done the recursive step defined by /; let’s call this number j and store it in register
p + k + 2. Note that initially j = 0, which is what we want.

Here’s the idea:

!

’transfer m,n to safety‘

l

’compute g(m) using Pg ‘

l

(doesj =n?)

YES

halt

NO

move the output r; to register k 42
return n to register k + 1

return m to registers 1,...,k

reset the appropriate registers to 0
compute h(m, j,ry) using Py
increase j by 1

We can achieve this with the following program (which may not be optimal):

(1) T(1, p+1)
(k+1) T(+1, p+k+1)

(k+2) Z(k+1)

(k+3)--- (k+3+£(Pg)) P,

(k+4+£(Pg)) J(p+k+1, p+k+2.k+p+8+L(Pg)+L(Pp))
(k+5+€(Pg)) T(1,k+2)

(k+6+£(Pg)) T(p+k+1,k+1)

(2k +6+£(Pyg) T(p+1.1)

Qk+T+E(Py)) -+ (k +p+5+L(Pg)) Zlk+3. p]
(k+p+5+L(Pe)+1) -+ (k+5+p+L(Pg)+L(Ppy)) Py
(k+p+6+L(Pg)+L(Pp)) S(p+k+2)
(k+p+T+L(Pg)+L(Pp)) J(1,1,k+4+£(Pg))

Thus, we use k + p + 7 additional steps beyond the lengths of P; and Pj. This shows that the
URM-computable functions are closed under the primitive recursion scheme.



