
Primitive recursion is URM-computable

Let Pg compute g. Em/ and Ph compute h. Em; n;p/, where Em is of fixed length k � 0. We want a
program Pf that computes the function f defined by

f . Em; 0/ D g. Em/;

f . Em; nC 1/ D h. Em; n; f . Em; n//:

Let � be the largest register referred to by Pg or Ph. We need to preserve the input . Em; n/ of f ,
so we will store those in registers � C 1; : : : ; � C k C 1. We also need to keep track of how many
times we have done the recursive step defined by h; let’s call this number j and store it in register
�C k C 2. Note that initially j D 0, which is what we want.

Here’s the idea:

��

transfer Em; n to safety

��

compute g. Em/ using Pg

��˝
does j D n?

˛ YES //

NO

��

halt

move the output r1 to register kC 2

return n to register k C 1

return Em to registers 1; : : : ; k

reset the appropriate registers to 0

compute h. Em; j ; r1/ using Ph

increase j by 1

99

We can achieve this with the following program (which may not be optimal):

.1/ T .1; �C1/
:::

:::
.kC1/ T .kC1; �CkC1/

.kC2/ Z.kC1/

.kC3/ � � � .kC3C`.Pg// Pg

.kC4C`.Pg// J.�CkC1; �CkC2; kC�C8C`.Pg/C`.Ph//

.kC5C`.Pg// T .1; kC2/

.kC6C`.Pg// T .�CkC1; kC1/
:::

:::
.2kC6C`.Pg/ T .�C1; 1/

.2kC7C`.Pg// � � � .kC�C5C`.Pg// ZŒkC3; ��

.kC�C5C`.Pg/C1/ � � � .kC5C�C`.Pg/C`.Ph// Ph

.kC�C6C`.Pg/C`.Ph// S.�CkC2/

.kC�C7C`.Pg/C`.Ph// J.1; 1; kC4C`.Pg//

Thus, we use k C � C 7 additional steps beyond the lengths of Pg and Ph. This shows that the
URM-computable functions are closed under the primitive recursion scheme.

1


