Math 29, Spring 2007
 Assignment 1: Turing Machines Due Monday, April 9

1. Write a Turing machine that computes

$$
n \doteq-1= \begin{cases}0 & n=0 \\ n-1 & n>0\end{cases}
$$

Assume n is written in binary, leftmost digit corresponding to the 1s place and increasing $2 \mathrm{~s}, 4 \mathrm{~s}$, etc., as you move rightward along the tape, and that the read/write head is originally on the leftmost (least) digit of this representation of n.
Test your machine on the binary representations of $0,1,3$, and 4 .
2. Give an informal proof that a Turing machine with two read/write heads and two working tapes is no more powerful than the standard Turing machine, by describing how you would emulate a two-tape machine by a one-tape machine. You may assume the read/write heads are attached so they always point to corresponding positions on the two tapes rather than moving independently.

