
Chapter 2

Combinatorial Applications of
Induction

2.1 Some Examples of Mathematical Induc-

tion

In Chapter 1 (Problem 20), we used the principle of mathematical induction
to prove that a set of size n has 2n subsets. If you were unable to do that
problem and you haven’t yet read Appendix B, you should do so now.

2.1.1 Mathematical induction

The principle of mathematical induction states that

In order to prove a statement about an integer n, if we can

1. Prove the statement when n = b, for some fixed integer b

2. Show that the truth of the statement for n = k − 1 implies
the truth of the statement for n = k whenever k > b,

then we can conclude the statement is true for all integers n ≥ b.

As an example, let us return to Problem 20. The statement we wish to prove
is the statement that “A set of size n has 2n subsets.”
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Our statement is true when n = 0, because a set of size 0 is the
empty set and the empty set has 1 = 20 subsets. (This step of
our proof is called a base step.)

Now suppose that k > 0 and every set with k−1 elements has 2k−1

subsets. Suppose S = {a1, a2, . . . ak} is a set with k elements. We
partition the subsets of S into two blocks. Block B1 consists of the
subsets that do not contain an and block B2 consists of the subsets
that do contain an. Each set in B1 is a subset of {a1, a2, . . . ak−1},
and each subset of {a1, a2, . . . ak−1} is in B1. Thus B1 is the set
of all subsets of {a1, a2, . . . ak−1}. Therefore by our assumption
in the first sentence of this paragraph, the size of B1 is 2k−1.
Consider the function from B2 to B1 which takes a subset of S
including ak and removes ak from it. This function is defined on
B2, because every set in B2 contains ak. This function is onto,
because if T is a set in B1, then T ∪{ak} is a set in B2 which the
function sends to T . This function is one-to-one because if V and
W are two different sets in B2, then removing ak from them gives
two different sets in B1. Thus we have a bijection between B1

and B2, so B1 and B2 have the same size. Therefore by the sum
principle the size of B1 ∪B2 is 2k−1 + 2k−1 = 2k. Therefore S has
2k subsets. This shows that if a set of size k−1 has 2k−1 subsets,
then a set of size k has 2k subsets. Therefore by the principle of
mathematical induction, a set of size n has 2n subsets for every
nonnegative integer n.

The first sentence of the last paragraph is called the inductive hypothesis.
In an inductive proof we always make an inductive hypothesis as part of
proving that the truth of our statement when n = k− 1 implies the truth of
our statement when n = k. The last paragraph itself is called the inductive
step of our proof. In an inductive step we derive the statement for n = k from
the statement for n = k − 1, thus proving that the truth of our statement
when n = k − 1 implies the truth of our statement when n = k. The last
sentence in the last paragraph is called the inductive conclusion. All inductive
proofs should have a base step, an inductive hypothesis, an inductive step,
and an inductive conclusion.

There are a couple details worth noticing. First, in this problem, our
base step was the case n = 0, or in other words, we had b = 0. However,
in other proofs, b could be any integer, positive, negative, or 0. Second, our
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proof that the truth of our statement for n = k − 1 implies the truth of our
statement for n = k required that k be at least 1, so that there would be an
element ak we could take away in order to describe our bijection. However,
condition (2) of the principle of mathematical induction only requires that
we be able to prove the implication for k > 0, so we were allowed to assume
k > 0.

2.1.2 Binomial coefficients and the Binomial Theorem

63. When we studied the Pascal Equation and subsets in Chapter 1, it may
have appeared that there is no connection between the Pascal relation(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
and the formula

(
n
k

)
= n!

k!(n−k)!
. Of course you

probably realize you can prove the Pascal relation by substituting the
values the formula gives you into the right-hand side of the equation
and simplifying to give you the left hand side. In fact, from the Pascal
Relation and the facts that

(
n
0

)
= 1 and

(
n
n

)
= 1, you can actually

prove the formula for
(
n
k

)
by induction. Do so.

64. Use the fact that (x+y)n = (x+y)(x+y)n−1 to give an inductive proof
of the binomial theorem.

2.1.3 Inductive definition

You may have seen n! described by the two equations 0! = 1 and n! = n(n−1)!
for n > 0. By the principle of mathematical induction we know that this
pair of equations defines n! for all nonnegative numbers n. For this reason
we call such a definition an inductive definition. An inductive definition
is sometimes called a recursive definition. Often we can get very easy proofs
of useful facts by using inductive definitions.

65. An inductive definition of an for nonnegative n is given by a0 = 1 and
an = aan−1.

(a) Use this definition to prove the rule of exponents am+n = aman

for nonnegative m and n.

(b) Use this definition to prove the rule of exponents amn = (am)n.
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66. Give an inductive definition of the summation notation
∑n
i=1 ai. Use it

to prove the distributive law

b
n∑
i=1

ai =
n∑
i=1

bai.

2.1.4 Proving the general product principle (Optional)

We stated the sum principle as

If we have a partition of a set S, then the size of S is the sum of
the sizes of the blocks of the partition.

In fact, the simplest form of the sum principle says that the size of the sum
of two disjoint (finite) sets is the sum of their sizes.

67. Prove the sum principle we stated for partitions of a set from the sim-
plest form of the sum principle.

We stated the simplest form of the product principle as

If we have a partition of a set S into m blocks, each of size n,
then S has size mn.

In Problem 21 we gave a more general form of the product principle which
can be stated as

Let S be a set of functions f from [n] to some set X. Suppose
there are k1 choices for f(1). Suppose that for each choice of f(1)
there are k2 choices for f(2). In general, suppose that for each
choice of f(1), f(2), . . . f(i − 1), there are ki choices for f(i).
Then the number of functions in the set S is k1k2 · · · kn.

68. If you weren’t able to do so in Problem 21, prove the general form of
the product principle from the simplest form of the product principle.

2.1.5 Double Induction and Ramsey Numbers

In Section 1.3.4 we gave two different descriptions of the Ramsey number
R(m,n). However if you look carefully, you will see that we never showed
that Ramsey numbers actually exist; we merely described what they were
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and showed that R(3, 3) and R(3, 4) exist by computing them directly. As
long as we can show that there is some number R such that when there are
R people together, there are either m mutual acquaintances or n mutual
strangers, this shows that the Ramsey Number R(m,n) exists, because it
is the smallest such R. Mathematical induction allows us to show that one
such R is

(
m+n−2
m−1

)
. The question is, what should we induct on, m or n? In

other words, do we use the fact that with
(
m+n−3
m−2

)
people in a room there

are at least m − 1 mutual acquaintances or n mutual strangers, or do we
use the fact that with at least

(
m+n−3
n−2

)
people in a room there are at least

m mutual acquaintances or at least n − 1 mutual strangers? It turns out
that we use both. Thus we want to be able to simultaneously induct on m
and n. One way to do that is to use yet another variation on the principle
of mathematical induction, the Principle of Double Mathematical Induction.
This principle (which can be derived from one of our earlier ones) states that

In order to prove a statement about integers m and n, if we can

1. Prove the statement when m = a and n = b, for fixed inte-
gers a and b

2. Prove the statement when m = a and n > b and when m > a
and n = b (for the same fixed integers a and b),

3. Show that the truth of the statement for m = j and n = k−1
(with j ≥ a and k > j) and the truth of the statement for
m = j−1 and n = k (with j > a and k ≥ b) imply the truth
of the statement for m = j and n = k,

then we can conclude the statement is true for all pairs of integers
m ≥ a and n ≥ b.

69. Prove that R(m,n) exists by proving that if there are
(
m+n−2
m−1

)
people

in a room, then there are either at least m mutual acquaintances or at
least n mutual strangers.

70. Prove that R(m,n) ≤ R(m− 1, n) +R(m,n− 1).

71. (a) What does the equation in Problem 70 tell us about R(4, 4)?

(b) Consider 17 people arranged in a circle such that each person is
acquainted with the first, second, fourth, and eighth person to the
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right and the first, second, fourth, and eighth person to the left.
can you find a set of four mutual acquaintances? Can you find a
set of four mutual strangers?

(c) What is R(4, 4)?

72. (Optional) Can you prove the equation of Problem 70 by induction on
m + n? If so, do so, and if not, explain where there is a problem in
trying to do so.

73. (Optional) Prove the Principle of Double Mathematical Induction from
the Principle of Mathematical Induction.

2.2 Recurrence Relations

We have seen in Problem 20 (or Problem 21 in the Appendix on Induction)
that the number of subsets of an n-element set is twice the number of subsets
of an n− 1-element set.

74. Explain why it is that the number of bijections from an n-element set
to an n-element set is equal to n times the number of bijections from
an (n − 1)-element subset to an (n − 1)-element set. What does this
have to do with Problem 26?

We can summarize these observations as follows. If sn stands for the number
of subsets of an n-element set, then

sn = 2sn−1, (2.1)

and if bn stands for the number of bijections from an n-element set to an
n-element set, then

bn = nbn−1. (2.2)

Equations 2.1 and 2.2 are examples of recurrence equations or recurrence
relations. A recurrence relation or simply a recurrence is an equation
that expresses the nth term of a sequence an in terms of values of ai for i < n.
Thus Equations 2.1 and 2.2 are examples of recurrences.
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2.2.1 Examples of recurrence relations

Other examples of recurrences are

an = an−1 + 7, (2.3)

an = 3an−1 + 2n, (2.4)

an = an−1 + 3an−2, and (2.5)

an = a1an−1 + a2an−2 + · · ·+ an−1a1. (2.6)

A solution to a recurrence relation is a sequence that satisfies the recurrence
relation. Thus a solution to Recurrence 2.1 is sn = 2n. Note that sn = 17 ·2n
and sn = −13 · 2n are also solutions to Recurrence 2.1. What this shows
is that a recurrence can have infinitely many solutions. In a given problem,
there is generally one solution that is of interest to us. For example, if we are
interested in the number of subsets of a set, then the solution to Recurrence
2.1 that we care about is sn = 2n. Notice this is the only solution we have
mentioned that satisfies s0 = 1.

75. Show that there is only one solution to Recurrence 2.1 that satisfies
a0 = 1.

76. A first-order recurrence relation is one which expresses an in terms of
an−1 and other functions of n, but which does not include any of the
terms ai for i < n− 1 in the equation.

(a) Which of the recurrences 2.1 through 2.6 are first order recur-
rences?

(b) Show that there is one and only one sequence an that is defined
for every nonnegative integer n, satisfies a first order recurrence,
and satisfies a0 = a for some fixed constant a.

Figure 2.1: The Towers of Hanoi Puzzle
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77. The “Towers of Hanoi” puzzle has three rods rising from a rectangular
base with n rings of different sizes stacked in decreasing order of size
on one rod. A legal move consists of moving a ring from one rod to
another so that it does not land on top of a smaller ring. If mn is the
number of moves required to move all the rings from the initial rod to
another rod that you choose, give a recurrence for mn. (Hint: suppose
you already knew the number of moves needed to solve the puzzle with
n− 1 rings.)

78. We draw n mutually intersecting circles in the plane so that each one
crosses each other one exactly twice and no three have a boundary
point in common. (As examples, think of Venn diagrams with two or
three mutually intersecting sets.) Find a recurrence for the number
rn of regions into which the plane is divided by n circles. (One circle
divides the plane into two regions, the inside and the outside.) Find
the number of regions with n circles. For what values of n can you
draw a Venn diagram showing all the possible intersections of n sets
using circles to represent each of the sets?

2.2.2 Arithmetic Series

79. A child puts away two dollars from her allowance each week. If she
starts with twenty dollars, give a recurrence for the amount an of money
she has after n weeks and find out how much money she has at the end
of n weeks.

80. A sequence that satisfies a recurrence of the form an = an−1 + c is
called an arithmetic progression. Find a formula in terms of the initial
value a0 and the common difference c for the term an in an arithmetic
progression and prove you are right.

81. A person who is earning $50,000 per year gets a raise of $3000 a year
for n years in a row. Find a recurrence for the amount an of money the
person earns over n+ 1 years. What is the total amount of money that
the person earns over a period of n + 1 years? (In n + 1 years, there
are n raises.)

82. An arithmetic series is a sequence sn equal to the sum of the terms a0

through an of of an arithmetic progression. Find a recurrence for the
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sum sn of an arithmetic progression with initial value a0 and common
difference c (using the language of Problem 80). Find a formula for
general term sn of an arithmetic series.

2.2.3 First order linear recurrences

Recurrences such as those in Equations 2.1 through 2.5 are called linear
recurrences, as are the recurrences of Problems 77 and 78. A linear recur-
rence is one in which an is expressed as a sum of functions of n times values
of (some of the terms) ai for i < n plus (perhaps) another function (called
the driving function) of n. A linear equation is called homogeneous if the
driving function is zero (or, in other words, there is no driving function).
It is called a constant coefficient linear recurrence if the functions that are
multiplied by the ai terms are all constants (but the driving function need
not be constant).

83. Classify the recurrences in Equations 2.1 through 2.5 and Problems 77
and 78 according to whether or not they are constant coefficient, and
whether or not they are homogeneous.

84. As you can see from Problem 83 some interesting sequences satisfy first
order linear recurrences, including many that have constant coefficients,
have constant driving term, or are homogeneous. Find a formula for
the general term an of a sequence that satisfies a constant coefficient
first order linear recurrence an = ban−1 + d in terms of b, d, a0 and n
and prove you are correct. If your formula involves a summation, try
to replace the summation by a more compact expression.

2.2.4 Geometric Series

A sequence that satisfies a recurrence of the form an = ban−1 is called a
geometric progression. Thus the sequence satisfying Equation 2.1, the re-
currence for the number of subsets of an n-element set, is an example of a
geometric progression. From your solution to Problem 84, a geometric pro-
gression has the form an = a0b

n. In your solution to Problem 84 you may
have had to deal with the sum of a geometric progression in just slightly
different notation, namely

∑n−1
i=0 db

i. A sum of this form is called a (finite)
geometric series.
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85. Do this problem only if your final answer (so far) to Problem 84 con-
tained the sum

∑n−1
i=0 db

i.

(a) Expand (1 − x)(1 + x)? Expand (1 − x)(1 + x + x2). Expand
(1− x)(1 + x+ x2 + x3).

(b) What do you expect (1 − b)
∑n−1
i=0 db

i to be? What formula for∑n−1
i=0 db

i does this give you? Prove that you are correct.

In Problem 84 and perhaps 85 you proved an important theorem.

Theorem 2 If an = ban−1 + d, then an = a0b
n + d1−bn

1−b .

2.3 Trees

2.3.1 Undirected graphs

In Section 1.3.4 we introduced the idea of a directed graph. Graphs consist
of vertices and edges. We describe vertices and edges in much the same way
as we describe points and lines in geometry: we don’t really say what vertices
and edges are, but we say what they do. We just don’t have a complicated
axiom system the way we do in geometry. A graph consists of a set V called
a vertex set and a set E called an edge set. Each member of V is called a
vertex and each member of E is called an edge. Just as lines can connect
points in geometry, edges can connect vertices in graph theory. We have one
axiom like the axioms of geometry, namely, each edge connects two vertices.
We draw pictures of graphs much like we draw pictures of geometric objects.
In Figure 2.2 we show three pictures of graphs. Each circle in the figure
represents a vertex; each line segment represents an edge. You will note that
in the third graph we labelled the vertices; these labels are names we chose
to give the vertices. We can choose names or not as we please. The third
graph also shows that it is possible to have an edge that connects a vertex
(like the one labelled y) to itself or it is possible to have two or more edges
(like those between vertices v and y) between two vertices. The degree of a
vertex is the number of times it appears as the endpoint of edges; thus the
degree of y in the third graph in the figure is four.

86. The sum of the degrees of the vertices of a graph is related in a natural
way to the number of edges. What is the relationship? Prove you are
right. (Try to formulate your proof both with and without induction.)



2.3. TREES 37

Figure 2.2: Three different graphs
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w
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v

2.3.2 Walks and paths in graphs

A walk in a graph is an alternating sequence v0e1v1 . . . eivi of vertices and
edges such that edge ei connects vertices vi−1 and vi. A graph is called
connected if, for any pair of vertices, there is a walk starting at one and
ending at the other.

87. Which of the graphs in Figure 2.2 is connected?

88. A path in a graph is a walk with no repeated vertices. Find the longest
path you can in the third graph of Figure 2.2.

89. A cycle in a graph is a walk whose first and last vertex are equal with
no other repeated vertices. Which graphs in Figure 2.2 have cycles?
What is the largest number of edges in a cycle in the second graph in
Figure 2.2? What is the smallest number of edges in a cycle in the
third graph in Figure 2.2?

90. A connected graph with no cycles is called a tree. Which graphs, if
any, in Figure 2.2 are trees?
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2.3.3 Counting vertices, edges, and paths in trees

91. Draw some trees and on the basis of your examples, make a conjecture
about the relationship between the number of vertices and edges in a
tree. Prove your conjecture. (Hint: what happens if you choose an
edge and delete it, but not its endpoints?)

92. What is the minimum number of vertices of degree one in a tree? What
is it if the number of vertices is bigger than one? Prove that you are
correct.

93. In a tree, given two vertices, how many paths can you find between
them? Prove that you are correct.

94. How many trees are there on the vertex set {1, 2}? On the vertex set
{1, 2, 3}? When we label the vertices of our tree, we consider the tree
which has edges between vertices 1 and 2 and between vertices 2 and
3 different from the tree that has edges between vertices 1 and 3 and
between 2 and 3. See Figure 2.3. How many (labelled) trees are there

Figure 2.3: These two trees are different

1 2
3

2 3
1

on four vertices? You don’t have a lot of data to guess from, but try to
guess a formula for the number of trees with vertex set {1, 2, · · · , n}. (If
you organize carefully, you can figure out how many labelled trees there
are with vertex set {1, 2, 3, 4, 5} to help you make your conjecture.)
Given a tree with two or more vertices, labelled with positive integers,
define a sequence of integers inductively as follows: If the tree has two
vertices, the sequence consists of one entry, namely the vertex with the
larger label. Otherwise, let a1 be the lowest numbered vertex of degree
1 in the tree. Let b1 be the unique vertex in the tree adjacent to a1

and write down b1. Then write down the sequence corresponding to the
tree you get when you delete a1 from the tree. (If you are unfamiliar
with inductive (recursive) definition, you might want to write down
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some labelled trees on, say, ten vertices and construct the sequence
b.) How long will the sequence be if it is applied to a tree with n
vertices (labelled with 1 through n)? What can you say about the last
member of the sequence of bis? Can you tell from the sequence of bis
what a1 is? Find a bijection between labelled trees and something you
can “count” that will tell you how many labelled trees there are on n
labelled vertices.

2.3.4 Spanning trees

Many of the applications of trees arise from trying to find an efficient way to
connect all the vertices of a graph. For example, in a telephone network, at
any given time we have a certain number of wires (or microwave channels,
or cellular channels) available for use. These wires or channels go from a
specific place to a specific place. Thus the wires or channels may be thought
of as edges of a graph and the places the wires connect may be thought of
as vertices of that graph. A tree whose edges are some of the edges of a
graph G and whose vertices are all of the vertices of the graph G is called a
spanning tree of G. A spanning tree for a telephone network will give us a
way to route calls between any two vertices in the network.

95. Show that every connected graph has a spanning tree. Can you give
two essentially different proofs (they needn’t be completely different,
but should be different in at least one significant aspect)?

2.3.5 Minimum cost spanning trees

Our motivation for talking about spanning trees was the idea of finding a
minimum number of edges we need to connect all the edges of a communi-
cation network together. In many cases edges of a communication network
come with costs associated with them. For example, one cell-phone opera-
tor charges another one when a customer of the first uses an antenna of the
other. Suppose a company has offices in a number of cities and wants to
put together a communication network connecting its various locations with
high-speed computer communications, but to do so at minimum cost. Then
it wants to take a graph whose vertices are the cities in which it has offices
and whose edges represent possible communications lines between the cities.
Of course there will not necessarily be lines between each pair of cities, and
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the company will not want to pay for a line connecting city i and city j if it
can already connect them indirectly by using other lines it has chosen. Thus
it will want to choose a spanning tree of minimum cost among all spanning
trees of the communications graph. For reasons of this application, if we
have a graph with numbers assigned to its edges, the sum of the numbers on
the edges of a spanning tree of G will be called the cost of the spanning tree.

96. Describe a method (or better, two methods different in at least one
aspect) for finding a spanning tree of minimum cost in a graph whose
edges are labelled with costs, the cost on an edge being the cost for
including that edge in a spanning tree.

2.3.6 The deletion/contraction recurrence for spanning
trees

There are two operations on graphs that we can apply to get a recurrence
(though a more general kind than those we have studied for sequences) which
will let us compute the number of spanning trees of a graph. The operations
each apply to an edge e of a graph G. The first is called deletion; we delete
the edge e from the graph by removing it from the edge set. The second
operation is called contraction. Contractions of three different edges in the
same graph are shown in Figure 2.4. We contract the edge e with endpoints
v and w as follows:

1. remove all edges having either v or w or both as an endpoint from the
edge set,

2. remove v and w from the vertex set,

3. add a new vertex E to the vertex set,

4. add an edge from E to each remaining vertex that used to be an end-
point of an edge whose other endpoint was v or w, and add an edge
from E to E for any edge other than e whose endpoints were in the set
{v, w}.

We use G−e (read as G minus e) to stand for the result of deleting e from G,
and we use G/E (read as G contract e) to stand for the result of contracting
G from e.
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Figure 2.4: The results of contracting three different edges in a graph.
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97. How do the number of spanning trees of G not containing the edge
e and the number of spanning trees of G containing e relate to the
number of spanning trees of G−e and G/e? Use #(G) to stand for the
number of spanning trees of G (so that, for example, #(G/e) stands for
the number of spanning trees of G/e. Find an expression for #(G) in
terms of #(G/e) and #(G− e). This expression is called the deletion-
contraction recurrence. Use it to compute the number of spanning trees
of the graph in Figure 2.5.

2.3.7 Shortest paths in graphs

Suppose that a company has a main office in one city and regional offices
in other cities. Most of the communication in the company is between the
main office and the regional offices, so the company wants to find a spanning
tree that minimizes not the total cost of all the edges, but rather the cost of
communication between the main office and each of the regional offices. It
is not clear that such a spanning tree even exists. This problem is a special
case of the following. We have a connected graph with numbers assigned to
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Figure 2.5: A graph.
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its edges. (In this situation these numbers are often called weights.) The
(weighted) length of a path in the graph is the sum of the weights of its
edges. The distance between two vertices is the least (weighted) length of
any path between the two vertices. Given a vertex v, we would like to know
the distance between v and each other vertex, and we would like to know if
there is a spanning tree in G such that the length of the path in the spanning
tree from v to each vertex x is the distance from v to x in G.

98. Show that the following algorithm (known as Dijkstra’s algorithm) ap-
plied to a weighted graph whose vertices are labelled 1 to n gives, for
each i, the distance from vertex 1 to v as d(i).

(a) Let d(1) = 0. Let d(i) = ∞ for all other i. Let v(1)=1. Let
v(j) = 0 for all other j. For each i and j, let w(i, j) be the
minimum weight of an edge between i and j, or ∞ if there are no
such edges. Let k = 1. Let t = 1.

(b) For each i, if d(i) > d(k) + w(k, i) let d(i) = d(k) + w(k, i).

(c) Among those i with v(i) = 0, choose one with d(i) a minimum,
and let k = i. Increase t by 1.

(d) Repeat the previous steps until t = n

99. Is there a spanning tree such that the distance from vertex 1 to vertex
i given by the algorithm in Problem 98 is the distance for vertex 1 to
vertex i in the tree (using the same weights on the edges, of course)?



2.4. SUPPLEMENTARY PROBLEMS 43

2.4 Supplementary Problems

1. A hydrocarbon molecule is a molecule whose only atoms are either
carbon atoms or hydrogen atoms. In a simple molecular model of a
hydrocarbon, a carbon atom will bond to exactly four other atoms and
hydrogen atom will bond to exactly one other atom. We represent a
hydrocarbon compound with a graph whose vertices are labelled with
C’s and H’s so that each C vertex has degree four and each H vertex has
degree one. A hydrocarbon is called an “alkane” (common examples
are methane (natural gas), propane, hexane (ordinary gasoline), octane
(to make gasoline burn more slowly), etc.) if each C vertex is adjacent
to four distinct vertices and the graph is a tree. How many different
alkanes have exactly n vertices labelled C? (Here we say two trees are
the same if we can make their drawings congruent by shortening and
lengthening lines, or moving the vertices and edges around, making
sure that after we move things around, the edges are attached to the
same vertices as before.)

2. (a) Give a recurrence for the number of ways to divide 2n people into
sets of two for tennis games. (Don’t worry about who serves first.)

(b) Give a recurrence for the number of ways to divide 4n people into
sets of four for games of bridge. (Don’t worry about how they sit
around the bridge table or who is the first dealer.)

3. Use induction to prove your result in Supplementary Problem 2 at the
end of Chapter 1.


