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Quick links to definitions/theorems

• The Fundamental Theorem of Arithmetic

1. Prime numbers and prime factorization

We’ve spent a good amount of time discussing divisibility, solving ax + by = c in
integers, and greatest common divisors. We’ll now put what we’ve learned to good
use by studying properties of prime numbers more closely.

It all starts with Euclid’s Lemma, which I’ll repeat again:

Lemma 1 (Euclid’s Lemma, 2.1b, 2.2). Let p be a prime. If p|ab, then p|a or p|b.
More generally, if p|(a1 . . . an), then p|ai for some i.

Proof. We saw the proof for n = 2 last class. The proof for general n uses induc-
tion. Suppose we know this statement for a given n. We want to prove the corre-
sponding statement for n + 1 terms; that is, we want to prove the statement that if
p|(a1 . . . an+1), then p|ai for some i. Let a = a1 . . . an, b = an+1. Then p|ab =⇒ p|a
or p|b. If p|an+1, we are done. If p|a = (a1 . . . an), use the inductive hypothesis to
conclude that p|ai for some 1 ≤ i ≤ n. �

A quick corollary of Euclid’s Lemma is the following:

Corollary 1 (Exercise 2.1). If p is a prime, and p|ak, then p|a.

This is easily proven by just applying Euclid’s Lemma to a1 = a, . . . , ak = a.
Why is Euclid’s Lemma so important? It allows us to prove the following theorem,

one of the most important in the class:

Theorem 1 (The Fundamental Theorem of Arithmetic, Theorem 2.3). Let n > 1 be
an integer. Then there exists a unique prime power factorization

n = pe11 . . . pekk ,

where p1, . . . , pk are distinct prime numbers, and ei > 0 are positive integers. (When
we say this factorization is unique, we really mean unique up to permutation of the
prime-power factors. For instance, we consider 12 = 22 · 31 to be the same factoriza-
tion as 12 = 31 · 22, since we just moved around the powers of 2, 3.)
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Proof. We’ll begin by proving the existence of such a factorization. Again, we do so
by induction. Suppose we know that every integer between 2 and n− 1 has a prime
power factorization. Consider the number n. If n is prime, then n = n1 is a prime
power factorization of n, and we are done. So suppose n is not prime. Then we can
write n = ab, where 1 < a, b < n. But then a, b have prime power factorizations,
and when we multiply them together, we get a factorization of n. So this proves the
existence of a prime power factorization.

Now let’s prove uniqueness. Suppose n has two prime power factorizations

(1) n = pe11 . . . pekk = qf11 . . . qf`` .

(The qjs are prime numbers, and fj > 0 are positive integers.) Notice that p1 divides

n. In particular, p1 divides the right hand side, so p1|qf11 . . . qf`` . Euclid’s Lemma tells

us that p1|q
fj
j , for some 1 ≤ j ≤ `. Then the corollary to Euclid’s Lemma tells us

that p1|qj. Because qj is a prime number, we must have p1 = qj. Switching q1 with
qj (and f1 with fj), we can assume that p1 = q1. (This relabeling is legal because we
said factorization was unique up to a permutation of the factors.)

Now we claim that e1 = f1. Suppose that e1 6= f1, say e1 > f1. (If the reverse
inequality is true, just flip the roles of the e, fs in this argument.) Then after dividing

both sides of Equation 1 by pf11 , we get

pe1−f11 . . . pekk = qf22 . . . qf`` .

The exponent of p1 on the left hand side is positive, so p1 divides the left hand side.
However, notice that p1 cannot divide the right hand side: if p1 did divide the right
hand side, then we could conclude (exactly as we did before) that p1 = qj for some
2 ≤ j ≤ `. This is impossible because we initially assumed all the qs to be distinct
primes. So the original assumption that e1 6= f1 must be false; that is, we must have
e1 = f1.

At this point, we can divide pe11 from both sides of Equation 1 to get an equation

pe22 . . . pekk = qf22 . . . qf`` .

We can repeat the above argument multiple times to show that each pi = qi, and
ei = fi, and k = `. In particular, we know that k = `, because if not, we end up with
the equation

1 = q
fk+1

k+1 . . . qf`` ,

(or perhaps 1 = a product of ps), which is impossible since the right hand side is
greater than 1.

�

This is a great result. One advantage of knowing that a unique prime factorization
exists is that it provides a way for us to think about products, quotients, gcds, and
lcms of pairs of integers in an efficient way. For instance, suppose we know that

a = pe11 . . . pekk , b = pf11 . . . pfkk ,
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where this time we let ei, fi ≥ 0, although we do insist that at least one of ei, fi > 0.
(We do this to simplify notation, since we’re allowing for the possibility that a certain
prime only divides one of a, b.) Then we have the following convenient formulas:

ab = pe1+f1
1 . . . pek+fk

k ,

if b|a, then fi ≤ ei for all i, and
a

b
= pe1−f11 . . . pek−fkk ,

gcd(a, b) = p
min(e1,f1)
1 . . . p

min(ek,fk)
k , and

lcm(a, b) = p
max(e1,f1)
1 . . . p

max(ek,fk)
k .

In contrast to these above formulas, there is no nice way of expressing the prime
factorization of a+ b in terms of the factorizations of a, b. Here is a frequently useful
notation. Suppose that p|n, where p is a prime. Then the factorization of n has some
positive power of p in it, say pe. We write pe‖n in this situation. For instance, 22‖12,
since the highest power of 2 dividing 12 is 22. We also sometimes write vp(n) for the
exponent of the highest power of p dividing n; that is, if pe‖n, then vp(n) = e. For
example, v2(40) = 3, since 23|40 but 24 - 40. The number vp(n) is sometimes called
the p-adic valuation of n. As a matter of fact, these definitions work even if p - n,
since the highest power of p dividing n is then p0.

Examples.

• Find the prime factorization of 30. One method of finding the prime factor-
ization of an integer is trial division. That is, we simply test the divisibility
of 30 by small integers which get larger and larger until we find one which
works, and then start over with whatever’s left, until we reach a prime.

In this example, we see that 2|30. So 30 = 21 · 15. Since 2 - 15, but 3|5, we
have 30 = 2 · 3 · 5. Since 2, 3, 5 are all primes, this is the prime factorization
of 30.
• Find the prime factorizations of 994, 399, and verify that the above formulas

for gcd, lcm are true. We already know that 7|994, and 994 = 7 · 142. Since
2|142, we know 944 = 7 · 2 · 71. If you spend a while testing 71, you will
eventually find that 71 is prime (we will go back to the question of how to
more efficiently test for primality later). So the prime factorization of 944 is
944 = 2 · 7 · 71.

As for 399, notice that 399 = 7 · 57, and 3|57, so 399 = 7 · 3 · 19. Since 19
is prime, the factorization of 399 is 399 = 3 · 7 · 19.

So we indeed see that gcd(994, 399) = 71, as expected, and one can check
that lcm(944, 399) = 2 · 3 · 7 · 19 · 71.
• Notice that the above formulas give an easy verification of the fact that ab =

gcd(a, b)lcm(a, b), because ei + fi = min(ei, fi) + max(ei, fi) is always true.
• One consequence of the above formulas is that if n = pe11 . . . pekk , then nm =
pme1
1 . . . pmek

k is the prime factorization of nm.
• Why don’t we use prime factorizations to calculate gcds? Because it is very

computationally intensive to calculate a prime factorization! After all, finding
a prime factorization is equivalent to listing all the factors of a number.
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• One consequence of the above formulas is that it becomes very easy to calcu-
late the number of factors a number has if you know its prime factorization.
For example, the number pn has factors p0, p1, . . . , pn, which are n+ 1 factors
altogether. More generally, n = pe11 . . . pekk has (e1+1) . . . (ek+1) factors, since

the set of factors of n is described by pf11 . . . pfkk , where 0 ≤ fi ≤ ei for all i.
• Exercise: Let p be a prime. Show that vp(n!) (that is, the exponent of the

highest power of p dividing n!) is given by the formula

vp(n!) =
∞∑
k=1

⌊
n

pk

⌋
=

⌊
n

p1

⌋
+

⌊
n

p2

⌋
+ . . .

We’ll conclude by showing that
√

2 is irrational.

Theorem 2 (Corollary 2.5).
√

2 is irrational.

Proof. Recall that a number is rational if we can write it in the form a/b, where a, b
are integers. We will proceed by contradiction. Suppose

√
2 = a/b for integers a, b.

Then 2 = a2/b2, or

2a2 = b2.

Now consider the prime factorizations of a, b. In particular, think about the exponent
of the prime 2 in these prime factorizations. On the one hand, both a2 and b2 will
have factorization where the exponent of 2 is even (possibly 0). On the other hand,
the power of 2 appearing in 2a2 must be odd. This is a contradiction, so

√
2 must be

irrational. �

Of course, you can see how this generalizes to
√
m, where m is any positive integer

which is not a perfect square.
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