Notice that this assignment is due on Monday instead of Friday.
(1) Let $p>3$ be a prime. Let $r_{1}, \ldots, r_{\phi(p-1)}$ be the primitive roots $\bmod p$ satisfying $1<r_{i}<p$. Show that the product of all the r_{i} is congruent to $1 \bmod p$.
(2) Without using a calculator, determine whether 112 is a quadratic residue $\bmod 659$ or not. You may assume that 659 is a prime number.
(3) If $p \equiv 1 \bmod 4$ is a prime, show that

$$
\left(\left(\frac{p-1}{2}\right)!\right)^{2} \equiv-1 \quad \bmod p
$$

(4) Recall that for an odd prime p, a product of quadratic non-residues is a quadratic residue, and that exactly half of the $p-1$ elements of U_{p} are quadratic residues. Show that for $n=8$, neither of these properties holds: that is, the number of quadratic residues in U_{8} is not half the size of U_{8}, and that a product of two quadratic non-residues in U_{8} might not be a quadratic residue.
(5) Let $p>3$ be a prime. Show that the sum of the quadratic residues (between 1 and $p) \bmod p$ is congruent to $0 \bmod p$.
(6) Give a characterization of all primes p such that $1,2,3,4,5$ are all quadratic residues $\bmod p$. Your final answer should be in the form $p \equiv a_{1}, a_{2}, \ldots, a_{r} \bmod n$ for various integers a_{i} and an integer n. Exhibit such a p. (For the last part, you can use a calculator to test for primality.)

