HOMEWORK ASSIGNMENT \#7, DUE MONDAY, 11/15/2010

Notice that this assignment is due on Monday instead of Friday, because of the second midterm. You can use a calculator to calculate products $\bmod n$.
(1) Consider the group $(\mathbb{Z} / n \mathbb{Z},+)$.
(a) Show that the order of $a \bmod n$ in this group is equal to $n / \operatorname{gcd}(a, n)$.
(b) Let d be a positive integer which divides n. Find the number of elements of $(\mathbb{Z} / n \mathbb{Z},+)$ with order d.
(2) Suppose m, n are positive integers which are not coprime. Show that $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ is not isomorphic to $\mathbb{Z} / n m \mathbb{Z}$. (In particular this shows that $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ is not cyclic.)
(3) Suppose m, n are positive integers which are coprime. Show that $U_{n} \times U_{m}$ is isomorphic to $U_{m n}$.
(4) (a) Show that 5 is a primitive root mod 18.
(b) Which powers of $5 \bmod 18$ are also primitive roots $\bmod 18$?
(5) $p=229$ is a prime. How many elements of U_{229} are
(a) squares in U_{229} ?
(b) cubes in U_{229} ?
(c) eighth powers in U_{229} ?
(6) Show that 112 is a primitive root $\bmod 11$, but not a primitive root mod 121. Find a primitive root mod 121 .
(7) (a) True or false: suppose p, q are odd primes. If g is a primitive root $\bmod p$ and $\bmod q$, then g is a primitive root $\bmod p q$.
(b) True or false: suppose p is an odd prime, $e \geq 1$. If g is a primitive root mod 2 and $\bmod p^{e}$, then g is a primitive root $\bmod 2 p^{e}$.

