HOMEWORK ASSIGNMENT \#2, DUE FRIDAY, 10/8/2010

Remember to write clearly and to justify all your claims in your solutions.
(1) Let a_{1}, \ldots, a_{n} be nonzero integers. For what values of d does the equation $a_{1} x_{1}+$ $\ldots+a_{n} x_{n}=d$ have integer solutions x_{1}, \ldots, x_{n} ?
(2) Let a_{1}, \ldots, a_{n} be positive integers. Show that $\operatorname{lcm}\left(a_{1}, \ldots, a_{n}\right)=\operatorname{lcm}\left(\operatorname{lcm}\left(a_{1}, a_{2}\right), a_{3}, \ldots, a_{n}\right)$. (This is the mirror of exercise 1.9 in the textbook.)
(3) Find all integer solutions (x, y) to the equation $192 x+66 y=12$.
(4) The post office in Integerland issues 20 cent and 12 cent stamps. You want to make exactly $\$ 2.72$ in postage from these stamps. List all the different ways you can do so, and prove that your answer is correct. (Remember, you can't use a negative number of stamps.)
(5) (This problem is worth double.) Now suppose Integerland issues stamps in a and b cent denominations, where a, b are relatively prime positive integers both greater than 1. Show that
(a) $a b-a-b>0$.
(b) Show that the equation $a x+b y=a b-a-b$ has integer solutions x, y, but no matter how hard you try, you cannot actually make $a b-a-b$ cents worth of postage using stamps of size a, b (this means that you should show that any integer solution x, y of $a x+b y=a b-a-b$ satisfies either $x<0$ or $y<0$), and
(c) if d is any integer with $d>a b-a-b$, then you can make d cents worth of postage from some combination of a and b cent stamps.
(6) We know that if p is a prime, n any positive integer, and $p \mid a^{n}$, then $p \mid a$. Classify all numbers d such that for any positive n, if $d \mid a^{n}$, then $d \mid a$. (You should give a simple description of all d which satisfy this property, prove that all such d do indeed satisfy this property, and then give a counterexample for each d which does not satisfy your description.)
(7) Recall that if n is a positive integer, $n!=n(n-1)(n-2) \ldots(2)(1)$ is the product of the first n positive integers.
(a) Let m be a positive integer. Show that the number of integers between 1 and n which are divisible by m is equal to $\lfloor n / m\rfloor$, where $\lfloor x\rfloor$ is the largest integer less than or equal to x. For instance, $\lfloor 3\rfloor=3,\lfloor e\rfloor=2,\lfloor 13 / 2\rfloor=6$.
(b) Let p be a prime. Show that $v_{p}(n!)$ (that is, the exponent of the highest power of p dividing $n!$) is given by the formula

$$
v_{p}(n!)=\sum_{k=1}^{\infty}\left\lfloor\frac{n}{p^{k}}\right\rfloor=\left\lfloor\frac{n}{p^{1}}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\ldots
$$

