(11.1 \# 20) Find all solutions of the congruence $x^{2} \equiv 58(\bmod 77)$.

If $x^{2} \equiv 58(\bmod 77)$ then $x^{2} \equiv 58 \equiv 2(\bmod 7)$ and $x^{2} \equiv 58 \equiv 3(\bmod 11)$. The two solutions to the first congruence are $x \equiv 3$ or $4(\bmod 7)$, and the solutions to the second congruence are $x \equiv 5$ or $6(\bmod 11)$. We use the Chinese Remaider Theorem to find the unique solution mod 77 for the two sets of congruences

$$
\begin{array}{ll}
x \equiv 4 & (\bmod 7) \\
x \equiv 5 & (\bmod 11)
\end{array}
$$

and

$$
\begin{array}{ll}
x \equiv 4 & (\bmod 7) \\
x \equiv 6 & (\bmod 11) .
\end{array}
$$

These are 60 and $39 \bmod 77$. Then the four solutions are $60,39,77-60=17$, and $77-39=38$.
(11.2 \# 2) Show that if p is an odd prime, then

$$
\left(\frac{3}{p}\right)=\left\{\begin{array}{lll}
1 & \text { if } p \equiv \pm 1 & (\bmod 12) \\
-1 & \text { if } p \equiv \pm 5 & (\bmod 12)
\end{array}\right.
$$

First, $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$ if $p \equiv 1(\bmod 4)$ and $\left(\frac{3}{p}\right)=-\left(\frac{p}{3}\right)$ if $p \equiv 3(\bmod 4)$. Then $\left(\frac{p}{3}\right)=1$ if $p \equiv 1(\bmod 3)$ and $\left(\frac{p}{3}\right)=-1$ if $p \equiv 2(\bmod 3)$. Collecting the cases, we see that $\left(\frac{3}{p}\right)=1$ if $p \equiv 1(\bmod 4)$ and $p \equiv 1(\bmod 3)$, or if $p \equiv 3(\bmod 4)$ and $p \equiv 2(\bmod 3)$. These cases correspond to $p \equiv \pm 1(\bmod 12)$. Then $\left(\frac{3}{p}\right)=-1$ if either $p \equiv 1(\bmod 4)$ and $p \equiv 2$ $(\bmod 3)$, or if $p \equiv 3(\bmod 4)$ and $p \equiv 1(\bmod 3)$. These cases correspond to $p \equiv \pm 5$ $(\bmod 12)$.
(11.2 \# 4) Find a congruence describing all primes for which 5 is a quadratic residue.

Since $5 \equiv 1(\bmod 4),\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$. Then $\left(\frac{p}{5}\right)=1$ exactly when $p \equiv 1$ or $4(\bmod 5)$, so 5 is a quadratic residue for all odd primes $p \equiv \pm 1(\bmod 5)$.
(11.2 \# 10) Show that Euler's form of the law of quadratic recprocity implies the law of quadratic reciprocity as stated in Theorem 11.7.

Euler's form of theorem says that if p is an odd integer and a is an integer coprime to p, then if q is prime with $p \equiv \pm q(\bmod 4 a)$, that $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$.

Let p and q be distinct odd primes. Then $p \equiv \pm q(\bmod 4)$ since each is either 1 or 3 $\bmod 4$. First suppose that $p \equiv q(\bmod 4)$. Then $p=q+4 a$ for some integer a, so $p \equiv q$
$(\bmod 4 a)$, and $p \nmid a$, otherwise $p=q$. So by Euler's version of the theorem, $\left(\frac{a}{p}\right)=\left(\frac{a}{q}\right)$. Then

$$
\left(\frac{p}{q}\right)=\left(\frac{q+4 a}{q}\right)=\left(\frac{4 a}{q}\right)=\left(\frac{4}{q}\right)\left(\frac{a}{q}\right)=\left(\frac{a}{p}\right)=\left(\frac{4 a}{p}\right)=\left(\frac{p-q}{p}\right)=\left(\frac{-q}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{q}{p}\right) .
$$

Then if $p \equiv 1(\bmod 4),\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$ and if $p \equiv 3(\bmod 4)$ then $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$.
Now suppose that $p \equiv-q(\bmod 4)$. Then $p=-q+4 a$ for some integer a and hence $p \equiv-q(\bmod 4 a)$ and $p \nmid a$. Then using Euler's version as before,

$$
\left(\frac{p}{q}\right)=\left(\frac{-q+4 a}{q}\right)=\left(\frac{4 a}{q}\right)=\left(\frac{a}{q}\right)=\left(\frac{a}{p}\right)=\left(\frac{4 a}{p}\right)=\left(\frac{4 a-p}{q}\right)=\left(\frac{q}{p}\right) .
$$

Putting the three possibilities together, we have

$$
\begin{aligned}
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) & =\left\{\begin{array}{lll}
1 & \text { if either } p \equiv 1 \quad(\bmod 4) \text { or } q \equiv 1 \quad(\bmod 4) \text { or both } \\
-1 & \text { if } p \equiv q \equiv 3 \quad(\bmod 4)
\end{array}\right. \\
& =(-1)^{\frac{p-1}{2} \frac{q-1}{2}}
\end{aligned}
$$

(11.3 \# 2) For which positive integers n that are relatively prime to 15 does the Jacobi symbol $\left(\frac{15}{n}\right)$ equal 1 ?

Since $15 \equiv 3(\bmod 4)$, then $\left(\frac{15}{n}\right)=\left(\frac{n}{15}\right)$ if $n \equiv 1(\bmod 4)$ and $\left(\frac{15}{n}\right)=-\left(\frac{n}{15}\right)$ if $n \equiv 3$ $(\bmod 4)$. Then $\left(\frac{n}{15}\right)=\left(\frac{n}{3}\right)\left(\frac{n}{5}\right)$. The only quadratic residue $\bmod 3$ is 1 , and the residues $\bmod 5$ are 1 and 4 . Then $\left(\frac{15}{n}\right)=1$ if
(a) $n \equiv 1(\bmod 4), n \equiv 1(\bmod 3)$ and $n \equiv 1$ or $4(\bmod 5)$, which yields $n \equiv 1$ or 49 $(\bmod 60)$
(b) $n \equiv 1(\bmod 4), n \equiv 2(\bmod 3)$ and $n \equiv 2 \operatorname{or} 3(\bmod 5)$, which yields $n \equiv 17$ or 53 $(\bmod 60)$,
(c) $n \equiv 3(\bmod 4), n \equiv 1(\bmod 3)$ and $n \equiv 2$ or $3(\bmod 5)$, which yields $n \equiv 7$ or 43 $(\bmod 60)$, and
(d) $n \equiv 3(\bmod 4), n \equiv 2(\bmod 3)$ and $n \equiv 1 \operatorname{or} 4(\bmod 5)$, which yields $n \equiv 11$ or 59 $(\bmod 60)$.
(11.3 \# 6) Find all the pseudo-squares modulo 35.

An integer a is a pseudo-square modulo 35 if $\left(\frac{a}{35}\right)=1$ but $x^{2} \equiv a(\bmod 35)$ has no solution. Since $\left(\frac{a}{35}\right)=\left(\frac{a}{5}\right)\left(\frac{a}{7}\right)$, this occurs if a is a non-residue $\bmod 5$ and 7 . Then $a \equiv 2$ or $3(\bmod 5)$ and $a \equiv 3,5$ or $6(\bmod 7)$. The six residue classes $\bmod 35$ satisfying these conditions are 3, $12,13,17,27$, and 33.
(11.4 \# 4) Show that if n is an Euler pseudoprime to the base b, then n is also an Euler pseudoprime to the base $n-b$.

If n is an Euler pseudoprime then $\left(\frac{b}{n}\right) \equiv b^{\frac{n-1}{2}}(\bmod n)$. First,

$$
\left(\frac{n-b}{n}\right)=\left(\frac{-b}{n}\right)=\left(\frac{-1}{n}\right)\left(\frac{b}{n}\right) .
$$

Then

$$
\left(\frac{-1}{n}\right)\left(\frac{b}{n}\right) \equiv(-1)^{\frac{n-1}{2}} b^{\frac{n-1}{2}} \equiv(-b)^{\frac{n-1}{2}} \equiv(n-b)^{\frac{n-1}{2}} \quad(\bmod n)
$$

(11.4 \# 6) Show that if $n \equiv 5(\bmod 12)$ and n is an Euler pseudoprime to the base 3 , then n is a strong pseudoprime to the base 3 .

Suppose that $n \equiv 5(\bmod 12)$ and that $\left(\frac{3}{n}\right) \equiv 3^{\frac{n-1}{2}}(\bmod n)$. Then since $n \equiv 1(\bmod 4)$ we see that $\left(\frac{3}{n}\right)=\left(\frac{n}{3}\right)$, and since $n \equiv 2(\bmod 3)$, this is equal to $\left(\frac{2}{3}\right)$, which is -1 . That is,

$$
3^{\frac{n-1}{2}} \equiv-1 \quad(\bmod n)
$$

and thus n passes Miller's test to the base 3 .
(13.1 \# 2) Show that if x, y, z is a primitive Pythagorean triple, then either x or y is divisible by 3 .

Let (x, y, z) be a primitive Pythagorean triple, and suppose that three divides neither x nor y. Then $x^{2} \equiv y^{2} \equiv 1(\bmod 3)$, and thus we must have $z^{2} \equiv x^{2}+y^{2} \equiv 2(\bmod 3)$. But $z^{2} \equiv 2(\bmod 3)$ has no solution, a contradiction. Thus three divides either x or y.
(13.1 \# 12) Find formulas for the integers of all Pythagorean triples x, y, z with $z=y+1$.

Suppose (x, y, z) is a primitive Pythagorean triple. Then there are integers m and n such that $x=m^{2}-n^{2}, y=2 m n$, and $z=m^{2}+n^{2}$. So with our hypothesis of $z=y+1$, we have $m^{2}+n^{2}=2 m n+1$. That is,

$$
\begin{aligned}
1 & =m^{2}-2 m n+n^{2} \\
& =(m-n)^{2} .
\end{aligned}
$$

Since we know $m-n>0$, we now see that $m-n=1$, and thus $m=n+1$. Thus all primitive triples with $z=y+1$ have the form, for $n \geq 1$,

$$
\begin{gathered}
x=(n+1)^{2}-n^{2}=2 n+1, \\
y=2(n+1) n=2 n^{2}+2 n, \\
z=(n+1)^{2}+n^{2}=2 n^{2}+2 n+1
\end{gathered}
$$

Now suppose that (x, y, z) is any Pythagorean triple with $z=y+1$. Then $(y, z)=1$, so $(x, y, z)=1$, and hence (x, y, z) is in fact primitive.
(13.1 \# 18) Find the length of the sides of all right triangles, where the sides have integer lengths and the area equals the perimeter.

Set $d=(x, y, z)$. Then we have $x=d\left(m^{2}-n^{2}\right), y=2 m n d$, and $z=d\left(m^{2}+n^{2}\right)$, for some integers m and n. We need the area of the right triangle to be equal to the perimeter. That is, $\frac{1}{2} x y=x+y+z$. Substituting, we find

$$
\begin{gathered}
\frac{1}{2} d\left(m^{2}-n^{2}\right)(2 m n d)=d\left(m^{2}-n^{2}\right)+2 m n d+d\left(m^{2}+n^{2}\right) \\
d^{2} m n\left(m^{2}-n^{2}\right)=d\left(m^{2}-n^{2}+2 m n+m^{2}+n^{2}\right) \\
d^{2} m n\left(m^{2}-n^{2}\right)=d\left(2 m^{2}+2 m n\right) \\
d n(m-n)=2
\end{gathered}
$$

Since $m-n \neq 2$, we have $m-n=1$, or $m=n+1$. Thus we have two cases. If $n=1$ and $d=2$, then $m=2$ and $(x, y, z)=(6,8,10)$. If $n=2$ and $d=1$, then $m=3$ and $(x, y, z)=(5,12,13)$. These are the only possibilites.

