
Math 25: Solutions to Homework #8

(11.1 # 20) Find all solutions of the congruence x2 ≡ 58 (mod 77).

If x2 ≡ 58 (mod 77) then x2 ≡ 58 ≡ 2 (mod 7) and x2 ≡ 58 ≡ 3 (mod 11). The two
solutions to the first congruence are x ≡ 3 or 4 (mod 7), and the solutions to the second
congruence are x ≡ 5 or 6 (mod 11). We use the Chinese Remaider Theorem to find the
unique solution mod 77 for the two sets of congruences

x ≡ 4 (mod 7)

x ≡ 5 (mod 11),

and

x ≡ 4 (mod 7)

x ≡ 6 (mod 11).

These are 60 and 39 mod 77. Then the four solutions are 60, 39, 77 − 60 = 17, and
77− 39 = 38.

(11.2 # 2) Show that if p is an odd prime, then(
3

p

)
=

{
1 if p ≡ ±1 (mod 12)

−1 if p ≡ ±5 (mod 12).

First,
(

3
p

)
=

(
p
3

)
if p ≡ 1 (mod 4) and

(
3
p

)
= −

(
p
3

)
if p ≡ 3 (mod 4). Then

(
p
3

)
= 1 if

p ≡ 1 (mod 3) and
(

p
3

)
= −1 if p ≡ 2 (mod 3). Collecting the cases, we see that

(
3
p

)
= 1

if p ≡ 1 (mod 4) and p ≡ 1 (mod 3), or if p ≡ 3 (mod 4) and p ≡ 2 (mod 3). These

cases correspond to p ≡ ±1 (mod 12). Then
(

3
p

)
= −1 if either p ≡ 1 (mod 4) and p ≡ 2

(mod 3), or if p ≡ 3 (mod 4) and p ≡ 1 (mod 3). These cases correspond to p ≡ ±5
(mod 12).

(11.2 # 4) Find a congruence describing all primes for which 5 is a quadratic residue.

Since 5 ≡ 1 (mod 4),
(

5
p

)
=

(
p
5

)
. Then

(
p
5

)
= 1 exactly when p ≡ 1 or 4 (mod 5), so 5 is

a quadratic residue for all odd primes p ≡ ±1 (mod 5).

(11.2 # 10) Show that Euler’s form of the law of quadratic recprocity implies the law of
quadratic reciprocity as stated in Theorem 11.7.

Euler’s form of theorem says that if p is an odd integer and a is an integer coprime to p,

then if q is prime with p ≡ ±q (mod 4a), that
(

a
p

)
=

(
a
q

)
.

Let p and q be distinct odd primes. Then p ≡ ±q (mod 4) since each is either 1 or 3
mod 4. First suppose that p ≡ q (mod 4). Then p = q + 4a for some integer a, so p ≡ q



(mod 4a), and p - a, otherwise p = q. So by Euler’s version of the theorem,
(

a
p

)
=

(
a
q

)
.

Then(
p

q

)
=

(
q + 4a

q

)
=

(
4a

q

)
=

(
4

q

) (
a

q

)
=

(
a

p

)
=

(
4a

p

)
=

(
p− q

p

)
=

(
−q

p

)
=

(
−1

p

) (
q

p

)
.

Then if p ≡ 1 (mod 4),
(

p
q

)
=

(
q
p

)
and if p ≡ 3 (mod 4) then

(
p
q

)
= −

(
q
p

)
.

Now suppose that p ≡ −q (mod 4). Then p = −q + 4a for some integer a and hence
p ≡ −q (mod 4a) and p - a. Then using Euler’s version as before,(

p

q

)
=

(
−q + 4a

q

)
=

(
4a

q

)
=

(
a

q

)
=

(
a

p

)
=

(
4a

p

)
=

(
4a− p

q

)
=

(
q

p

)
.

Putting the three possibilities together, we have(
p

q

) (
q

p

)
=

{
1 if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4) or both

−1 if p ≡ q ≡ 3 (mod 4)

= (−1)
p−1
2

q−1
2 .

(11.3 # 2) For which positive integers n that are relatively prime to 15 does the Jacobi
symbol

(
15
n

)
equal 1?

Since 15 ≡ 3 (mod 4), then
(

15
n

)
=

(
n
15

)
if n ≡ 1 (mod 4) and

(
15
n

)
= −

(
n
15

)
if n ≡ 3

(mod 4). Then
(

n
15

)
=

(
n
3

) (
n
5

)
. The only quadratic residue mod 3 is 1, and the residues

mod 5 are 1 and 4. Then
(

15
n

)
= 1 if

(a) n ≡ 1 (mod 4), n ≡ 1 (mod 3) and n ≡ 1 or 4 (mod 5), which yields n ≡ 1 or 49
(mod 60),

(b) n ≡ 1 (mod 4), n ≡ 2 (mod 3) and n ≡ 2 or 3 (mod 5), which yields n ≡ 17 or 53
(mod 60),

(c) n ≡ 3 (mod 4), n ≡ 1 (mod 3) and n ≡ 2 or 3 (mod 5), which yields n ≡ 7 or 43
(mod 60), and

(d) n ≡ 3 (mod 4), n ≡ 2 (mod 3) and n ≡ 1 or 4 (mod 5), which yields n ≡ 11 or 59
(mod 60).

(11.3 # 6) Find all the pseudo-squares modulo 35.

An integer a is a pseudo-square modulo 35 if
(

a
35

)
= 1 but x2 ≡ a (mod 35) has no solution.

Since
(

a
35

)
=

(
a
5

) (
a
7

)
, this occurs if a is a non-residue mod 5 and 7. Then a ≡ 2 or 3 (mod 5)

and a ≡ 3, 5 or 6 (mod 7). The six residue classes mod 35 satisfying these conditions are 3,
12, 13, 17, 27, and 33.

(11.4 # 4) Show that if n is an Euler pseudoprime to the base b, then n is also an Euler
pseudoprime to the base n− b.



If n is an Euler pseudoprime then
(

b
n

)
≡ b

n−1
2 (mod n). First,(

n− b

n

)
=

(
−b

n

)
=

(
−1

n

) (
b

n

)
.

Then (
−1

n

) (
b

n

)
≡ (−1)

n−1
2 b

n−1
2 ≡ (−b)

n−1
2 ≡ (n− b)

n−1
2 (mod n).

(11.4 # 6) Show that if n ≡ 5 (mod 12) and n is an Euler pseudoprime to the base 3, then
n is a strong pseudoprime to the base 3.

Suppose that n ≡ 5 (mod 12) and that
(

3
n

)
≡ 3

n−1
2 (mod n). Then since n ≡ 1 (mod 4)

we see that
(

3
n

)
=

(
n
3

)
, and since n ≡ 2 (mod 3), this is equal to

(
2
3

)
, which is -1. That is,

3
n−1

2 ≡ −1 (mod n),

and thus n passes Miller’s test to the base 3.

(13.1 # 2) Show that if x, y, z is a primitive Pythagorean triple, then either x or y is divisible
by 3.

Let (x, y, z) be a primitive Pythagorean triple, and suppose that three divides neither x
nor y. Then x2 ≡ y2 ≡ 1 (mod 3), and thus we must have z2 ≡ x2 + y2 ≡ 2 (mod 3). But
z2 ≡ 2 (mod 3) has no solution, a contradiction. Thus three divides either x or y.

(13.1 # 12) Find formulas for the integers of all Pythagorean triples x, y, z with z = y + 1.

Suppose (x, y, z) is a primitive Pythagorean triple. Then there are integers m and n such
that x = m2− n2, y = 2mn, and z = m2 + n2. So with our hypothesis of z = y + 1, we have
m2 + n2 = 2mn + 1. That is,

1 = m2 − 2mn + n2

= (m− n)2.

Since we know m − n > 0, we now see that m − n = 1, and thus m = n + 1. Thus all
primitive triples with z = y + 1 have the form, for n ≥ 1,

x = (n + 1)2 − n2 = 2n + 1,

y = 2(n + 1)n = 2n2 + 2n,

z = (n + 1)2 + n2 = 2n2 + 2n + 1.

Now suppose that (x, y, z) is any Pythagorean triple with z = y + 1. Then (y, z) = 1, so
(x, y, z) = 1, and hence (x, y, z) is in fact primitive.

(13.1 # 18) Find the length of the sides of all right triangles, where the sides have integer
lengths and the area equals the perimeter.



Set d = (x, y, z). Then we have x = d(m2 − n2), y = 2mnd, and z = d(m2 + n2), for some
integers m and n. We need the area of the right triangle to be equal to the perimeter. That
is, 1

2
xy = x + y + z. Substituting, we find

1

2
d(m2 − n2)(2mnd) = d(m2 − n2) + 2mnd + d(m2 + n2)

d2mn(m2 − n2) = d(m2 − n2 + 2mn + m2 + n2)

d2mn(m2 − n2) = d(2m2 + 2mn)

dn(m− n) = 2.

Since m − n 6= 2, we have m − n = 1, or m = n + 1. Thus we have two cases. If n = 1
and d = 2, then m = 2 and (x, y, z) = (6, 8, 10). If n = 2 and d = 1, then m = 3 and
(x, y, z) = (5, 12, 13). These are the only possibilites.


