Math 25: Solutions to Homework #8

(11.1 # 20) Find all solutions of the congruence x? = 58 (mod 77).

If 2 = 58 (mod 77) then z?> = 58 = 2 (mod 7) and 22 = 58 = 3 (mod 11). The two
solutions to the first congruence are x = 3 or 4 (mod 7), and the solutions to the second
congruence are x = 5 or 6 (mod 11). We use the Chinese Remaider Theorem to find the
unique solution mod 77 for the two sets of congruences

r=4 (mod7)

r=5 (mod 11),
and

r=4 (mod?7)

r=6 (mod 11).

These are 60 and 39 mod 77. Then the four solutions are 60, 39, 77 — 60 = 17, and
77— 39 = 38.

(11.2 # 2) Show that if p is an odd prime, then
(§) 1 ifp=+1 (mod 12)
p) |-1 ifp=45 (mod 12).

First, (£) = () if p=1 (mod 4) and (2) = = (8) if p=3 (mod 4). Then (%) = 1 if

3
p=1 (mod 3) and (§) = —1if p =2 (mod 3). Collecting the cases, we see that (%) =1
if p =1 (mod4) and p = 1 (mod 3), or if p = 3 (mod 4) and p = 2 (mod 3). These
cases correspond to p = +1 (mod 12). Then (%) = —1 if either p =1 (mod 4) and p = 2

(mod 3), or if p = 3 (mod 4) and p = 1 (mod 3). These cases correspond to p = +5
(mod 12).

(11.2 # 4) Find a congruence describing all primes for which 5 is a quadratic residue.

Since 5 =1 (mod 4), <§> = (2). Then (&) =1 exactly when p =1 or 4 (mod 5), so 5 is

a quadratic residue for all odd primes p = £1 (mod 5).

(11.2 # 10) Show that Euler’s form of the law of quadratic recprocity implies the law of
quadratic reciprocity as stated in Theorem 11.7.

Euler’s form of theorem says that if p is an odd integer and a is an integer coprime to p,
then if ¢ is prime with p = +¢ (mod 4a), that (%) = (2)

q
Let p and ¢ be distinct odd primes. Then p = +¢ (mod 4) since each is either 1 or 3

mod 4. First suppose that p = ¢ (mod 4). Then p = g + 4a for some integer a, so p = ¢



(mod 4a), and p 1 a, otherwise p = ¢. So by Euler’s version of the theorem, <%> = (5>.
Then

(5)-(=7)- () -0 G -C)-6G)-5)-6G)-(F) 6
Then if p=1 (mod 4), (g) - (g) and if p=3 (mod 4) then (g) S (g)

Now suppose that p = —¢ (mod 4). Then p = —q + 4a for some integer a and hence
p = —q (mod 4a) and p { a. Then using Euler’s version as before,

(=) =)= -6)-G) =)= 6)

Putting the three possibilities together, we have

(2) (g) )1 ifeitherp=1 (mod4)org=1 (mod 4) or both
q | -1 ifp=g=3 (mod4)

p—1g—1

= (_1)77_

(11.3 # 2) For which positive integers n that are relatively prime to 15 does the Jacobi
symbol ( 5) equal 17

= () ifn=1 (mod4) and (£2) = — (%) ifn=3

Since 15 = 3 (mod 4), then (1)

The only quadratic residue mod 3 is 1, and the residues
1i

od 3

(mod 4). Then (1) = (2) (2).
mod 5 are 1 and 4. Then ( ) =
(m

15
(a) n =1 (mod4), n = 1

) and n = 1 or 4 (mod 5), which yields n = 1 or 49

(b)) n =1 (mod 4), n = 2 (mod 3) and n = 2 or 3 (mod 5), which yields n = 17 or 53
6

(c)n =3 (mod4), n = 1 (mod 3) and n = 2 or 3 (mod 5), which yields n = 7 or 43
6

(d) n =3 (mod4), n =2 (mod 3) and n = 1 or 4 (mod 5), which yields n = 11 or 59
(mod 60).

(11.3 # 6) Find all the pseudo-squares modulo 35.

An integer a is a pseudo-square modulo 35 if () = 1 but #* = a (mod 35) has no solution.
Since (35) = (£) (%), this occurs if a is a non-residue mod 5 and 7. Then a = 2 or 3 (mod 5)
and a = 3,5 or 6 (mod 7). The six residue classes mod 35 satisfying these conditions are 3,

12, 13, 17, 27, and 33.

(11.4 # 4) Show that if n is an Euler pseudoprime to the base b, then n is also an Euler
pseudoprime to the base n — b.



If n is an Euler pseudoprime then (2) = bz (mod n). First,
n=bYy _ (2 (b
n )/ \n/) \n nj)’

<—_1) (E) = (1) = (<h) = (=)™ (mod n).

Then

(11.4 # 6) Show that if n =5 (mod 12) and n is an Euler pseudoprime to the base 3, then
n is a strong pseudoprime to the base 3.

n—1

Suppose that n =5 (mod 12) and that (2) =3"2 (mod n). Then since n =1 (mod 4)
we see that (%) = %), and since n = 2 (mod 3), this is equal to (%), which is -1. That is,
(

n—1

377 =-1 (mod n),

and thus n passes Miller’s test to the base 3.

(13.1 # 2) Show that if z, y, z is a primitive Pythagorean triple, then either x or y is divisible
by 3.

Let (x,y, z) be a primitive Pythagorean triple, and suppose that three divides neither x
nor y. Then 22 = y? =1 (mod 3), and thus we must have 22 = 2% + y? = 2 (mod 3). But
2? =2 (mod 3) has no solution, a contradiction. Thus three divides either z or y.

(13.1 # 12) Find formulas for the integers of all Pythagorean triples x, y, z with z =y + 1.

Suppose (z,y, z) is a primitive Pythagorean triple. Then there are integers m and n such
that £ = m? —n?, y = 2mn, and z = m? + n?. So with our hypothesis of z = y + 1, we have
m? +n? = 2mn + 1. That is,

1 = m?—=2mn+n?
= (m—n)

Since we know m — n > 0, we now see that m —n = 1, and thus m = n + 1. Thus all
primitive triples with z = y + 1 have the form, for n > 1,

r=Mm+1)2—-n*=2n+1,
=2(n+ 1)n = 2n* + 2n,
z=(n+1)*+n*=2n*+2n+1.
Now suppose that (x,y, z) is any Pythagorean triple with z = y + 1. Then (y,z) = 1, so

(x,y,z) =1, and hence (z,y, 2) is in fact primitive.

(13.1 # 18) Find the length of the sides of all right triangles, where the sides have integer
lengths and the area equals the perimeter.



Set d = (,y, 2). Then we have x = d(m? —n?), y = 2mnd, and z = d(m?* + n?), for some
integers m and n. We need the area of the right triangle to be equal to the perimeter. That
is, %xy = x + y + 2. Substituting, we find

1
§cl(m2 —n?)(2mnd) = d(m* — n?) + 2mnd + d(m* + n?)
d*mn(m?* — n?) = d(m* — n? + 2mn + m? + n?)
d*mn(m? — n?) = d(2m® + 2mn)
dn(m —n) = 2.

Since m —n # 2, we have m —n = 1, or m = n + 1. Thus we have two cases. If n =1
and d = 2, then m = 2 and (z,y,2) = (6,8,10). If n = 2 and d = 1, then m = 3 and
(x,y,2) = (5,12,13). These are the only possibilites.



