Math 25: Solutions to Homework \#7
(8.4 \# 6) What is the cipher text that is produced when RSA encryption with key $(e, n)=$ $(7,2627)$ is used to encrypt the message LIFE IS A DREAM?

The numerical equivalent of the plaintext is 110805040818000317040012 . Raising each of these blocks to the power $7 \bmod 2627$ we get the ciphertext 10190014106621871349 2155.
(8.4 \# 8) If the ciphertext message produced by RSA encryption with the key $(e, n)=$ $(5,2881)$ is 05041874034705152088235607360468 , what is the plaintext message?

We must first find the decryption key by solving $5 d \equiv 1(\bmod \phi(2881))$. First, since $2881=43 \cdot 67, \phi(2881)=42 \cdot 66=2772$. Then $d \equiv 5^{\phi(2772)-1}(\bmod 2772)$. Since $2772=$ $2^{2} \cdot 3^{2} \cdot 7 \cdot 11, \phi(2772)=\phi\left(2^{2}\right) \phi\left(3^{2}\right) \phi(7) \phi(11)=2 \cdot 6 \cdot 6 \cdot 10=720$. Hence $d \equiv 5^{719} \equiv 1109$ $(\bmod 2772)$. To decrypt, we raise each block of four digits to the power $719 \bmod 2881$. We get the plaintext 04001902071402141100190402001004 which says EAT CHOCOLATE CAKE. Good words of advice.
(8.5 \# 2) Show that if $a_{1}, a_{2}, \ldots, a_{n}$ is a super-increasing sequence, then $a_{j} \geq 2^{j-1}$ for $j=1,2, \ldots, n$.

We induct on $1 \leq j \leq n$. For the base case, since this must be a sequence of positive integers, $a_{1} \geq 1=\overline{2^{0}}=2^{1-1}$. Now let $1 \leq j<n$ and assume that $a_{k} \geq 2^{k-1}$ for all k with $1 \leq k \leq j$. Then

$$
a_{j+1}>\sum_{k=1}^{j} a_{k} \geq \sum_{k=1}^{j} 2^{k-1}=2^{j}-1
$$

so $a_{j+1} \geq 2^{j}$. Therefore, by induction, $a_{j} \geq 2^{j-1}$ for $j=1,2, \ldots, n$.
(8.5 \# 6) Encrypt the message BUY NOW using the knapsack cipher based on the sequence obtained from (17, 19, 37, 81, 160) by performing modular multiplication with multiplier $w=29$ and modulus $m=331$.

Multiplying by $29 \bmod 331$, we get the sequence ($162,220,80,32,6$). The binary equivalent of BUY NOW is 000011010011000011010111010110 . For each string $x_{1} x_{2} x_{3} x_{4} x_{5}$, we compute $162 x_{1}+220 x_{2}+80 x_{3}+32 x_{4}+6 x_{5}$. We get the ciphertext 6242382306332274 .
(11.1 \# 6) Let a and b be integers not divisible by the prime p. Show that either one or all three of the integers a, b, and $a b$ are quadratic residues of p.

We have $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$. Therefore if $\left(\frac{a b}{p}\right)=1$ then $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$ so either both a and b are quadratic residues mod p, or both are quadratic nonresidues. If $\left(\frac{a b}{p}\right)=-1$, then
$\left(\frac{a}{p}\right)=-\left(\frac{b}{p}\right)$, so exactly one of $\left(\frac{a}{p}\right)$ and $\left(\frac{b}{p}\right)$ is a quadratic residue. In each case, there are either 1 or 3 quadratic residues from among a, b and $a b$.
(11.1 \# 10) Show that if b is a positive integer not divisible by the prime p, then

$$
\left(\frac{b}{p}\right)+\left(\frac{2 b}{p}\right)+\left(\frac{3 b}{p}\right)+\cdots+\left(\frac{(p-1) b}{p}\right)=0
$$

We have

$$
\begin{aligned}
\left(\frac{b}{p}\right)+\left(\frac{2 b}{p}\right)+\left(\frac{3 b}{p}\right)+\cdots+\left(\frac{(p-1) b}{p}\right) & = \\
& \left(\frac{b}{p}\right)\left(\left(\frac{1}{p}\right)+\left(\frac{2}{p}\right)+\left(\frac{3}{p}\right)+\cdots+\left(\frac{(p-1)}{p}\right)\right)=\left(\frac{b}{p}\right)(0)=0
\end{aligned}
$$

since there are the same number of quadratic residues as quadratic nonresidues $\bmod p$.
(11.1 \# 12) Consider the quadratic congruence $a x^{2}+b x+c \equiv 0(\bmod p)$, where p is prime and a, b, and c are integers with $p \nmid a$. Determine which quadratic congruences mod p have solutions.
(a) Let $p=2$. Then there are four possible quadratic congruences:
(i) $x^{2} \equiv 0(\bmod 2)$,
(ii) $x^{2}+1 \equiv 0(\bmod 2)$,
(iii) $x^{2}+x \equiv 0(\bmod 2)$, and
(iv) $x^{2}+x+1 \equiv 0(\bmod 2)$.

Since the only solutions mod 2 can be 0 or 1 , they are easy to check. Of these, (i) has solution $x \equiv 0(\bmod 2)$, (ii) has solutions $x \equiv 0$ or $1(\bmod 2)$, and (iii) has solution $x \equiv 1(\bmod 2)$. Congruence (iv) has no solutions.
(b) Let p be an odd prime. If $a x^{2}+b x+c \equiv 0(\bmod p)$, then $a x^{2}+b x+c=k p$ for some integer k. Using the quadratic formula,

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a(c-k p)}}{2 a} .
$$

Rearranging, we have

$$
2 a x+b= \pm \sqrt{b^{2}-4 a(c-k p)}
$$

so, squaring,

$$
(2 a x+b)^{2}=b^{2}-4 a(c-k p) .
$$

Then if we set $y=2 a x+b$ and $d=b^{2}-4 a c$, we have $y^{2} \equiv d(\bmod p)$. Starting with this congruence and performing the same steps in reverse, we recover the original congruence, so the two are equivalent. Then if $d \equiv 0(\bmod p)$ then $y \equiv 2 a x+b \equiv 0(\bmod p)$, so $x \equiv-\overline{(2 a)} b(\bmod p)$ is the only solution. If d is a quadratic residue $\bmod p$ then there are exactly two solutions for $y^{2} \equiv d(\bmod p)$, so exactly two solutions for the quadratic congruence, since $(2 a, p)=1$. If d is a quadratic nonresidue then there are no solutions for $y^{2} \equiv d(\bmod p)$ and hence no solutions for the corresponding quadratic congruence $\bmod p$.
(11.1 \# 14) Show that if p is primes and $p \geq 7$, then there are always two consecutive quadratic residues of p.

First suppose that $p=7$. Then 1 and 2 are consecutive quadratic residues $\bmod p$. Now suppose that $p \geq 11$. Then 1,4 and 9 are all quadratic residues $\bmod p$, and by problem $\# 6$, at least one of 2,5 or 10 is a quadratic residue $\bmod p$. Therefore at least one of the pairs $(1,2),(4,5)$, or $(9,10)$ is a pair of quadratic residues $\bmod p$.

